Trucler
A Common Lisp environment protocol
and its implementation.

Robert Strandh

2019

i

Contents

(I__Introduction|

Y

[2

Querying the environment|

2.1 Query functions|. oo

2322

identity-mixin| oL oo

2.2.3

type-mixinf e

P24

1gNOTe-MIXIN| v o e e e e e

225

dynamic-extent-mixin|

226

expansion-mixin|.

027

expander-mixin|

228 class-pame-mixin|l

O O © W]~~~ T =W

P21l

speed-mixin| Lo 10

PI212

compilation-speed-mixin| 11

213

debug-mixin|o 11

214

SPACE-MIXIN| o o e e 11

2215

safety-mixin|l. oL 12

2.2.16

superclass-names-mixin| 12

1l

v

PRSI

P42

P43

P44

P45

P46

3 Augmenting the environment|

B1

Creating new description|

B2

Low-level augmentation tunctions|

[3.3

Merging descriptions|

B4

High-level annotation functions|

BA.1

Adding and annotating variables|

B.4.2

Adding and annotating functions|

B43

Adding blocks|.o

B.4.4

Adding tags|

BA5

Annotating the optimize qualities)

Variable description|
Function description|
Block description|
Tag description|
Class description|
Optimize description|

CONTENTS

Chapter 1

Introduction

In section 8.5 of the second edition of the book “Common Lisp, the Language”
(also known as CLtL2) by Guy Steele [Ste90], a protocol for accessing compile-
time environments is defined. That protocol has two main problems:

1. It is incomplete. It does not provide for a way to query the environment
for description about blocks or tags.

2. It is not extensible. In order for an implementation to make one of the
query functions return more information, additional return values would
have to be defined. However, such a change is not considered backward
compatible, so this kind of extension is not recommended.

Trucler introduces a protocol that solves these problems as follows:

1. It contains additional query and augmentation functions for blocks and
tags.

2. Instead of returning multiple values, the query functions return standard
objects. Accessors specialized to the classes of those objects provide the
information that the protocol in CLtL2 provides as multiple values.

In addition to providing a mechanism that solves the problems of protocol

2 CHAPTER 1. INTRODUCTION

presented in CLtL2, we also add several new features that a language processor
must use to process source code.

Chapter 2

Querying the environment

In this chapter, we describe classes and functions that are used by the language
processor to query the environment concerning information about program
elements that the language processor needs in order to determine how to process
those program elements.

When the language processor calls a generic query function, it passes two or
three arguments, depending on the function it calls. The first argument is
called the client. Trucler does not specialize on this argument, but client
code should define a standard class and pass an instance of that class for this
argument. Client code can then define auxiliary methods that specialize to this
class on the query generic functions. The second argument is the environment
concerned by the query. Client code must supply methods on these functions,
specialized to its particular representation of its global environments. If the
client does not have an explicit representation of its global environment (as
is usually the case), it must nevertheless define a dummy standard class to
specialize on. Contrary to global environments, Trucler provides its own repre-
sentation of lezical environments, and it provides methods on the query func-
tions, specialized to the classes defined to represent those lexical environments.
Client code that wants to use a different representation of lexical environments
than the one provided by Trucler must also provide methods specialized to its
lexical environment classes.

The primary methods on the query functions should return instances of the

4 CHAPTER 2. QUERYING THE ENVIRONMENT

classes described in this chapter. Any such instance contains all available in-
formation about some program element in that particular environment. This
information must typically be assembled from different parts of the environ-
ment. For that reason, client code typically creates a new instance whenever
a query function is called, rather than attempting to store such instances in
the environment. If any of these client-supplied methods fails to accomplish
its task, it should return nil.

Client code is free to define subclasses of the classes described here, for instance
in order to represent implementation-specific information about the program
elements. Client code would then typically also provide auxiliary methods or
overriding primary methods on the compilation functions that handle these
classes.

2.1 Query functions

2.1.1 Variable information

describe-variable client environment name [Generic Function]

This function is called by the language processor whenever a symbol in a vari-

able position is to be compiled. If successful, it returns an instance of one of
the classes described in Section 2.4.11

no-variable-description [Condition|

This condition is signaled by Trucler when a client-supplied method on the
generic function describe-variable returns nil.

name (condition no-variable-description) [Method)]

This method returns the name of the variable for which no description was
available.

2.1.2 Function information

describe-function client environment name [Generic Function]

This function is called by the language processor whenever a symbol in a func-

2.1. QUERY FUNCTIONS b}

tion position is to be compiled or whenever a function name is found in a
context where it is known to refer to a function. If successful, it returns an
instance of one of the classes described in Section 2.4.2]

no-function-description [Condition]

This condition is signaled by Trucler when a client-supplied method on the
generic function describe-function returns nil.

name (condition no-function-description) [Method|

This method returns the name of the function for which no description was
available.

2.1.3 Block information

describe-block client environment name [Generic Function]

This function is called by the language processor whenever a symbol referring
to a block is found, typically in a return-from form. If successful, it returns
an instance of the class described in Section

no-block-description [Condition|

This condition is signaled by Trucler when a client-supplied method on the
generic function describe-block returns nil.

name (condition no-block-description) [Method)]

This method returns the name of the block for which no description was avail-
able.

2.1.4 Tag information

describe-tag client environment tag [Generic Function]

This function is called by the language processor whenever a symbol or an
integer referring to a tag is found, typically in a go form. If successful, it
returns an instance of the class described in Section

no-tag-description [Condition|

This condition is signaled by Trucler when a client-supplied method on the

6 CHAPTER 2. QUERYING THE ENVIRONMENT

generic function describe-tag returns nil.
name (condition no-tag-description) [Method|

This method returns the name of the tag for which no description was available.

2.1.5 Class information

describe-class client environment class-name [Generic Function]

This function is called by the language processor whenever a symbol referring to
a class is found, for example as a specializer in a defmethod form. If successful,
it returns an instance of the class described in Section

no-class-description [Condition|

This condition is signaled by Trucler when a client-supplied method on the
generic function describe-class returns nil.

name (condition no-class-description) [Method)|

This method returns the name of the class for which no description was avail-
able.

2.1.6 Optimize information

describe-optimize client environment [Generic Function]

Client-supplied methods on this function must always return a valid instance of
the class optimize-description. It returns an instance of the class described

in Section 2.4.6]

2.2 Mixin classes

For maximum flexibility, each query class is the subclass of one or more mixin
classes, each one providing one single feature. That feature is represented as a
slot with an initarg, a reader, an initform, and a type.

2.2. MIXIN CLASSES 7

2.2.1 name-mixin

name-mixin [Class]

This class is a superclass of query classes that require a name to identify the
information supplied by the class instances.

:name [Initarg]
name (description name-mixin) [Method|

Given an instance of the class name-mixin, this method returns the name
information, as supplied by the initarg :name.

2.2.2 identity-mixin

identity-mixin [Class]

This class is a superclass of query classes that require some kind of identity to
distinguish instances of the query class that have the same name.

:identity [Initarg|
identity (description identity-mixin) [Method|

Given an instance of the class identity-mixin, this method returns the iden-
tity information, as supplied by the initarg :idenity.

2.2.3 type-mixin

type-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have a type.

:type [Initarg]
If this initarg is not supplied, it defaults to t.
type (description type-mixin) [Method)]

Given an instance of the class type-mixin, this method returns the type infor-
mation, as supplied by the initarg :type.

8 CHAPTER 2. QUERYING THE ENVIRONMENT

2.2.4 ignore-mixin

ignore-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can be declared ignore or ignorable.

:ignore [Initarg]

The value of this initarg must be one of the symbols ignore and ignorable
from the common-1lisp package.

ignore (description ignore-mixin) [Method)|

Given an instance of the class ignore-mixin, this method returns the ignore
information, as supplied by the initarg :ignore.

2.2.5 dynamic-extent-mixin

dynamic-extent-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can be declared dynamic-extent.

:dynamic-extent [Initarg]
dynamic-extent (description dynamic-extent-mixin) [Method)]

Given an instance of the class dynamic-extent-mixin, this method returns
the dynamic-extent information, as supplied by the initarg :dynamic-extent.

2.2.6 expansion-mixin

expansion-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have an expansion. In particular, it is a superclass of the abstract
class symbol-macro-description.

:expansion [Initarg]

expansion (description expansion-mixin) [Method)]

2.2. MIXIN CLASSES 9

Given an instance of the class expansion-mixin, this method returns the ex-
pansion information, as supplied by the initarg :expansion.

2.2.7 expander-mixin

expander-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have an expander function. In particular, it is a superclass of the
abstract class macro-description.

:expander [Initarg]
expander (description expander-mixin) [Method|

Given an instance of the class expander-mixin, this method returns the ex-
pander information, as supplied by the initarg :expander.

2.2.8 class-name-mixin

class-name-mixin [Class]

This class is a superclass of query classes that provide information about en-
tities that can have a class-name. In particular, it is a superclass of the class
global-function-description.

:class-name [Initarg]
class-name (description class-name-mixin) [Method)]

Given an instance of the class class-name-mixin, this method returns the
class-name information, as supplied by the initarg :class-name.

2.2.9 inline-mixin

inline-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have inline information. In particular, it is a superclass of the class
authentic-function-description.

10 CHAPTER 2. QUERYING THE ENVIRONMENT

:inline [Initarg|

Possible values for this initarg are nil, inline, and notinline, all symbols in
the common-1isp package. The value nil means that no inline information has
been provided, and this is the default value if the initarg is omitted.

inline (description inline-mixin) [Method)]

Given an instance of the clagss inline-mixin, this method returns the inline
information, as supplied by the initarg :inline.

2.2.10 method-class-name-mixin

method-class-name-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have method-class-name information. In particular, it is a superclass
of the class generic-function-description.

:method-class-name [Initarg]

The value of this initarg is a symbol naming a class to be used for methods. If
this initarg is not given, it defaults to the symbol standard-method.

method-class-name (description method-class-name-mixin) [Method)|

Given an instance of the class method-class-name-mixin, this method returns
the method-class-name information, as supplied by the initarg :method-class-name.

2.2.11 speed-mixin

speed-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have speed information. In particular, it is a superclass of the class
optimize-description.

:speed [Initarg]
The value of this initarg must be an integer between 0 and 3 inclusive.

speed (description speed-mixin) [Method)]

2.2. MIXIN CLASSES 11

Given an instance of the class speed-mixin, this method returns the compilation-
speed information, as supplied by the initarg :speed.

2.2.12 compilation-speed-mixin

compilation-speed-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have compilation-speed information. In particular, it is a superclass
of the class optimize-description.

:compilation-speed [Initarg]
The value of this initarg must be an integer between 0 and 3 inclusive.
compilation-speed (description compilation-speed-mixin) [Method)]

Given an instance of the class compilation-speed-mixin, this method returns
the compilation-speed information, as supplied by the initarg : compilation-speed.

2.2.13 debug-mixin

debug-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have debug information. In particular, it is a superclass of the class
optimize-description.

:debug [Initarg]
The value of this initarg must be an integer between 0 and 3 inclusive.
debug (description debug-mixin) [Method|

Given an instance of the class debug-mixin, this method returns the debug
information, as supplied by the initarg :debug.

2.2.14 space-mixin

space-mixin [Class]

12 CHAPTER 2. QUERYING THE ENVIRONMENT

This class is a superclass of query classes that provide information about entities
that can have space information. In particular, it is a superclass of the class
optimize-description.

:space [Initarg]
The value of this initarg must be an integer between 0 and 3 inclusive.
space (description space-mixin) [Method)]

Given an instance of the class space-mixin, this method returns the space
information, as supplied by the initarg :space.

2.2.15 safety-mixin

safety-mixin [Class|

This class is a superclass of query classes that provide information about entities
that can have safety information. In particular, it is a superclass of the class
optimize-description.

:safety [Initarg]
The value of this initarg must be an integer between 0 and 3 inclusive.
safety (description safety-mixin) [Method)]

Given an instance of the class safety-mixin, this method returns the safety
information, as supplied by the initarg :safety.

2.2.16 superclass-names-mixin

superclass-names-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have superclass-names information. In particular, it is a superclass of
the class class-description.

:superclass-names [Initarg]

The value of this initarg is a list of symbols naming a classes. If this initarg
is not given, it defaults the empty list. Only explicitly mentioned superclass
names should be provided.

2.3. ABSTRACT QUERY CLASSES 13

superclass-names (description superclass-names-mixin) [Method)]

Given an instance of the class superclass-names-mixin, this method returns
the superclass-names information, as supplied by the initarg :superclass-names.

2.2.17 metaclass-name-mixin

metaclass-name-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have metaclass-name information. In particular, it is a superclass of
the class class-description.

:metaclass-name [Initarg|

The value of this initarg is a symbol naming a class to be used as a metaclasss.
If this initarg is not given, it defaults to the symbol standard-class.

metaclass-name (description metaclass-name-mixin) [Method)]

Given an instance of the class metaclass-name-mixin, this method returns
the metaclass-name information, as supplied by the initarg :metaclass-name.

2.3 Abstract query classes

variable-description [Class]

This abstract class is the superclass of every query class returned by a call to the
generic function describe-variable. It is a subclass of the class name-mixin.

authentic-variable-description [Class]

This abstract class is a subclass of the classes variable-description and
type-mixin.

It is a superclass of the two instantiable classes lexical-variable-description
and special-variable-description.

symbol-macro-description [Class]

This abstract class is a subclass of the classes variable-description, type-mixin,
and expansion-mixin.

14 CHAPTER 2. QUERYING THE ENVIRONMENT

It is a superclass of the two instantiable classes local-symbol-macro-description
and global-symbol-macro-description.

function-description [Class]

This abstract class is the superclass of every query class returned by a call
to the generic function function-description. It is a subclass of the class
name-mixin.

authentic-function-description [Class]

This abstract class is a subclass of the classes function-description and
type-mixin.

It is a superclass of the two instantiable classes local-function-description
and global-function-description.

macro-description [Class]

This abstract class is a subclass of the classes function-description and
expander-mixin.

It is a superclass of the two instantiable classes local-macro-description and
global-macro-description.

2.4 Instantiable classes

2.4.1 Variable description

lexical-variable-description [Class]

This class represents information about lexical variables. An instance of this
class is returned by a call to variable-description when it turns out that
the symbol passed as an argument refers to a lexical variable.

This class is a subclass of the classes authentic-variable-description identity-mixin,
ignore-mixin, and dynamic-extent-mixin.

special-variable-description [Class|

This class represents information about special variables. An instance of this
class is returned by a call to variable-description when it turns out that

2.4. INSTANTIABLE CLASSES 15

the symbol passed as an argument refers to a special variable.

This class is a subclass of the classes authentic-variable-description and
global-p-mixin.

constant-variable-description [Class]

This class represents information about constant variables. An instance of this
class is returned by a call to variable-description when it turns out that
the symbol passed as an argument refers to a constant variable.

This class is a subclass of the classes variable-description and value-mixin.
global-symbol-macro-description [Class]

This class is a subclass of symbol-macro-description. It is returned by a
call to variable-descriptionrmation when the name is defined as a global
symbol macro, as defined by define-symbol-macro.

local-symbol-macro-description [Class]

This class is a subclass of symbol-macro-description and ignore-mixin. It is
returned by a call to variable-descriptionrmation when the name is defined
as a local symbol macro, as defined by symbol-macrolet.

2.4.2 Function description

local-function-description [Class]

This class represents information about local functions introduced by flet or
labels. An instance of this classis returned by a call to function-description
when it turns out that the function name passed as an argument refers to a
local function.

This class is a subclass of authentic-function-description, identity-mixin,
ignore-mixin, and dynamic-extent-mixin.

global-function-description [Class]

This class represents information about global functions. An instance of this
class is returned by a call to function-description when it turns out that
the function name passed as an argument refers to a global function.

16 CHAPTER 2. QUERYING THE ENVIRONMENT

This class is a subclass of authentic-function-description, compiler-macro-mixin,
and class-name-mixin.

generic-function-description [Class]
This class is a subclass of global-function-description and method-class-name-mixin.
local-macro-description [Class]

This class represents information about local macros introduced by macrolet.
An instance of this class is returned by a call to function-description when
it turns out that the function name passed as an argument refers to a local
macro.

This class is a subclass of macro-description and ignore-mixin.
global-macro-description [Class]

This class represents information about global macros introduced by macrolet.
An instance of this class is returned by a call to function-description when
it turns out that the function name passed as an argument refers to a global
macro.

This class is a subclass of macro-description and compiler-macro-mixin.
special-operator-description [Class]

This class represents information about special operators. An instance of this
class is returned by a call to function-description when it turns out that
the function name passed as an argument refers to a specialoperator.

This class is a subclass of the class function-description.

2.4.3 Block description

block-description [Class]

This class represents information about blocks introduced by block. An in-
stance of this class is returned by a call to block-description when the symbol
passed as an argument refers to a block.

This class is a subclass of the classes name-mixin and identity-mixin.

2.4. INSTANTIABLE CLASSES 17

2.4.4 Tag description

tag-description [Class]

This class represents information about tags introduced by tagbody. An in-
stance of this class is returned by a call to tag-description when the name
(which must be a symbol or an integer) passed as an argument refers to a tag.

This class is a subclass of the classes name-mixin and identity-mixin.

2.4.5 Class description

class-description [Class]

This class represents information about a class introduced by defclass. An
instance of this class is returned by a call to class-description when the
name (which must be a symbol) passed as an argument refers to a class.

This class is a subclass of the classes name-mixin, superclass-names-mixin,
and metaclass-name-mixin.

2.4.6 Optimize description

optimize-description [Class]

This class is a subclass of speed-mixin, compilation-speed-mixin, debug-mixin,
space-mixin, and safety-mixin.

18

CHAPTER 2. QUERYING THE ENVIRONMENT

Chapter 3

Augmenting the environment

3.1 Creating new description

In order to create a new description, make-instance must be called, providing
values for all the initialization arguments corresponding to features that do not
have any initialization forms.

3.2 Low-level augmentation functions

In this section, we describe basic functions for augmenting an environment,
given an old environment and a description.

augment-with-variable-description client environment description |Generic Function|

This function is used to create a new environment object from an existing
environment object and an instance of the class variable-description.

augment-with-variable-description

client

(environment environment)

(description variable-description) [Method)]

This default method returns a new environment object which is like the one
passed as an argument, except that description will shadow any variable de-

19

20 CHAPTER 3. AUGMENTING THE ENVIRONMENT

scription with the same name.

augment-with-function-description client environment function-description [Generic Function|

This function is used to create a new environment object from an existing
environment object and an instance of the class function-description.

augment-with-function-description

client

(environment environment)

(function-description function-description) [Method)|

This default method returns a new environment object which is like the one
passed as an argument, except that function-description will shadow any func-
tion description with the same name.

augment-with-block-description client environment block-description [Generic Function|

This function is used to create a new environment object from an existing
environment object and an instance of the class block-description.

augment-with-block-description

client

(environment environment)

(block-description block-description) [Method)]

This default method returns a new environment object which is like the one
passed as an argument, except that block-description will shadow any block
description with the same name.

augment-with-tag-description client environment tag-description [Generic Function]

This function is used to create a new environment object from an existing
environment object and an instance of the class tag-description.

augment-with-tag-description

client

(environment environment)

(tag-description tag-description) [Method)|

This default method returns a new environment object which is like the one
passed as an argument, except that fag-description will shadow any tag de-
scription with the same name.

3.3. MERGING DESCRIPTIONS 21

augment-with-optimize-description
client environment optimize-description [Generic Function]

This function is used to create a new environment object from an existing
environment object and an instance of the class optimize-description.
augment-with-optimize-description

client

(environment environment)

(optimize-description optimize-description) [Method]
This default method returns a new environment object which is like the one
passed as an argument, except that optimize-description will shadow any pre-
vious optimize description.

3.3 Merging descriptions

We use the term merging to mean the creation of a new description from an
existing description plus some additional information such as type or dynamic
extent.

In this section, we describe generic functions that are provided for this purpose.
merge-type client description type [Generic Function]

Given an instance of the class description and a type descriptor, return a
new instance that is just like description (including the class and the values of
all the slots), except that its type description has been updated according to
that of type.

invalid-description-for-merging-type-information [Condition|

This condition is signaled by merge-type when the description argument is
not an instance of a class that contains information about type.

merge-type client description type [Method|

This is the default method provided on merge-type. It signals the condition
invalid-description-for-merging-type-information.

merge-type
client
(description type-mixin)

22 CHAPTER 3. AUGMENTING THE ENVIRONMENT

type [Method)]

This is the main method provided on merge-type and it is specialized to
type-mixin.

merge-ignore client description ignore [Generic Function]
Given an instance of the class description and one of the symbols cl:ignore
and cl:ignorable, return a new instance that is just like description (including

the class and the values of all the slots), except that its ignore information has
been updated according to that of ignore.

invalid-description-for-merging-ignore-information [Condition|

This condition is signaled by merge-ignore when the description argument is
not an instance of a class that contains information about ignore.

merge-ignore client description ignore [Method)|

This is the default method provided on merge-ignore. It signals the condition
invalid-description-for-merging-ignore-information.

merge-ignore

client

(description ignore-mixin)

ignore [Method)|
This is the main method provided on merge-ignore and it is specialized to
ignore-mixin.

merge-dynamic-extent client description [Generic Function]

Given an instance of the class description, return a new instance that is just
like description (including the class and the values of all the slots), except that
its dynamic-extent information has been updated so that it is frue.

invalid-description-for-merging-dynamic-extent-information [Condition|

This condition is signaled by merge-dynamic-extent when the description ar-
gument is not an instance of a class that contains information about dynamic-
extent.

merge-dynamic-extent client description [Method|

This is the default method provided on merge-dynamic-extent. It signals the
condition invalid-description-for-merging-dynamic-extent-information.

3.3. MERGING DESCRIPTIONS 23

merge-dynamic-extent client (description dynamic-extent-mixin) [Method)]

This is the main method provided on merge-dynamic-extent and it is special-
ized to dynamic-extent-mixin.

merge-inline client description inline [Generic Function]

Given an instance of the class description and one of the symbols cl:inline
and cl:notinline, return a new instance that is just like description (including
the class and the values of all the slots), except that its inline information has
been updated according to that of inline.

invalid-description-for-merging-inline-information [Condition|

This condition is signaled by merge-inline when the description argument is
not an instance of a class that contains information about inline.

merge-inline client description inline [Method|

This is the default method provided on merge-inline. It signals the condition
invalid-description-for-merging-inline-information.

merge-inline

client

(description inline-mixin)

inline [Method|
This is the main method provided on merge-inline and it is specialized to
inline-mixin.

merge-speed client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its speed information has been updated
according to that of value.

invalid-description-for-merging-speed-information [Condition|

This condition is signaled by merge-speed when the description argument is
not an instance of a class that contains information about speed.

merge-speed client description speed [Method|

This is the default method provided on merge-speed. It signals the condition
invalid-description-for-merging-speed-information.

24 CHAPTER 3. AUGMENTING THE ENVIRONMENT

merge-speed

client

(description speed-mixin)

value [Method)]

This is the main method provided on merge-speed and it is specialized to
speed-mixin.

merge-compilation-speed client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its compilation-speed information has been
updated according to that of value.

invalid-description-for-merging-compilation-speed-information [Condition|

This condition is signaled by merge-compilation-speed when the descrip-
tion argument is not an instance of a class that contains information about
compilation-speed.

merge-compilation-speed client description compilation-speed [Method)]

This is the default method provided on merge-compilation-speed. It signals
the invalid-description-for-merging-compilation-speed-information con-
dition.

merge-compilation-speed

client

(description compilation-speed-mixin)
value [Method)|

This is the main method provided on merge-compilation-speed and it is
specialized to compilation-speed-mixin.

merge-debug client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its debug information has been updated
according to that of value.

invalid-description-for-merging-debug-information [Condition|

This condition is signaled by merge-debug when the description argument is
not an instance of a class that contains information about debug.

3.3. MERGING DESCRIPTIONS 25

merge-debug client description debug [Method)]

This is the default method provided on merge-debug. It signals the condition
invalid-description-for-merging-debug-information.

merge-debug

client

(description debug-mixin)
value [Method|

This is the main method provided on merge-debug and it is specialized to
debug-mixin.

merge-space client description value [Generic Function]
Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the

values of all the slots), except that its space information has been updated
according to that of value.

invalid-description-for-merging-space-information [Condition|

This condition is signaled by merge-space when the description argument is
not an instance of a class that contains information about space.

merge-space client description space [Method|

This is the default method provided on merge-space. It signals the condition
invalid-description-for-merging-space-information.

merge-space

client

(description space-mixin)

value [Method|
This is the main method provided on merge-space and it is specialized to
space-mixin.

merge-safety client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its safety information has been updated
according to that of value.

invalid-description-for-merging-safety-information [Condition]

26 CHAPTER 3. AUGMENTING THE ENVIRONMENT

This condition is signaled by merge-safety when the description argument is
not an instance of a class that contains information about safety.

merge-safety client description safety [Method)|

This is the default method provided on merge-safety. It signals the condition
invalid-description-for-merging-safety-information.

merge-safety

client

(description safety-mixin)

value [Method)]

This is the main method provided on merge-safety and it is specialized to
safety-mixin.

3.4 High-level annotation functions

3.4.1 Adding and annotating variables

Adding a lexical variable

add-lexical-variable client environment name &optional identity [Generic Function]

This function returns a new environment that is like environment except that
it has been augumented with a lexical variable named name. The optional
argument identity can be supplied by client code to distinguish different lexical
variables with the same name.

add-lexical-variable client (environment environment) name &optional identity [Method)]

This is the main method on add-lexical-variable. It instantiates the class
lexical-variable-description and then creates a new environment by call-
ing the function augment-with-variable-description.

Adding a special variable

add-special-variable client environment name [Generic Function)]

3.4. HIGH-LEVEL ANNOTATION FUNCTIONS 27

This function returns a new environment that is like environment except that
it has been augumented with a special variable named name.

add-special-variable client (environment environment) name [Method|

This is the main method on add-special-variable. It instantiates the class
special-variable-description and then creates a new environment by call-
ing the function augment-with-variable-description.

Adding a local symbol macro

add-local-symbol-macro client environment name expansion [Generic Function]

This function returns a new environment that is like environment except that it
has been augmented with a local symbol macro named name, with the expansion
eTpansion

add-local-symbol-macro client (environment environment) name erpansion [Method)]

This is the main method on add-local-symbol-macro. It instantiates the
class local-symbol-macro-description and then creates a new environment
by calling the function augment-with-variable-description.

Annotating a variable with a type

add-variable-type client environment name type [Generic Function]

This function returns a new environment that is like environment except that
the variable named name has been annotated with the type specifier type.

The type of the variable returned when the new environment is queried for the
variable named name will have a new type that is the conjunction of type and
the type it had in environment.

This function can be used when name names a lexical variable, a special vari-
able, or a symbol macro, but not when name names a constant variable.

add-variable-type client (environment environment) name type [Method)]

This is the main method on add-variable-type. It calls describe-variable
to obtain an existing variable description. It then calls merge-type to create a

28 CHAPTER 3. AUGMENTING THE ENVIRONMENT

new variable description. Finally, it calls augment-with-variable-description
in order to create and return a new environment.

Annotating a variable with an ignore declaration

add-variable-ignore client environment name ignore [Generic Function]

This function returns a new environment that is like environment except that
the variable named name has been annotated with an ignore declaration.

The argument ¢gnore must be the symbol ignore or the symbol ignorable.

This function can be used when name names a lexical variable or a local symbol
macro.

add-variable-ignore client (environment environment) name ignore [Method|

This is the main method on add-variable-ignore. It calls describe-variable
to obtain an existing variable description. It then calls merge-ignore to create

a new variable description. Finally, it calls augment-with-variable-description
in order to create and return a new environment.

Annotating a variable with a dynamic-extent declaration

add-variable-dynamic-extent client environment name [Generic Function]

This function returns a new environment that is like environment except that
the variable named name has been annotated with an dynamic-extent decla-
ration.

This function can be used only when name names a lexical variable.
add-variable-dynamic-extent client (environment environment) name [Method)]

This is the main method on add-variable-dynamic-extent. It calls describe-variable
to obtain an existing variable description. It then calls merge-dynamic-extent

to create a new variable description. Finally, it calls augment-with-variable-description
in order to create and return a new environment.

3.4. HIGH-LEVEL ANNOTATION FUNCTIONS 29
3.4.2 Adding and annotating functions

Adding a local function

add-local-function client environment name &optional identity [Generic Function]

This function returns a new environment that is like environment except that
it has been augumented with a local function named name. The optional argu-
ment identity can be supplied by client code to distinguish different functions
with the same name.

add-local-function client (environment environment) name &optional identity [Method)|

This is the main method on add-local-function. It instantiates the class
local-function-description and then creates a new environment by calling
the function augment-with-function-description.

Adding a local macro

add-local-macro client environment name ezpander [Generic Function]

This function returns a new environment that is like environment except that
it has been augmented with a local macro named name. The argument ez-
pander is a macro-expansion function that takes two arguments, a form and
an environment.

add-local-macro client (environment environment) name expander [Method|

This is the main method on add-local-macro. It instantiates the class named
local-macro-description and then creates a new environment by calling the
function augment-with-function-description.

Annotating a function with a type

add-function-type client environment name type [Generic Function]

This function returns a new environment that is like environment except that
the function named name has been annotated with the type specifier type.

30 CHAPTER 3. AUGMENTING THE ENVIRONMENT

The type of the function returned when the new environment is queried for the
function named name will have a new type that is the conjunction of type and
the type it had in environment.

This function can be used when name names a local function or a global func-
tion.

add-function-type client (environment environment) name type [Method|

This is the main method on add-function-type. It calls describe-function
to obtain an existing function description. It then calls merge-type to create a
new function description. Finally, it calls augment-with-function-description
in order to create and return a new environment.

Annotating a function with an ignore declaration

add-function-ignore client environment name ignore [Generic Function]

This function returns a new environment that is like environment except that
the function named name has been annotated with an ignore declaration.

The argument ignore must be the symbol ignore or the symbol ignorable.

This function can be used when name names a local function or a local macro.
add-function-ignore client (environment environment) name ignore [Method|

This is the main method on add-function-ignore. It calls describe-function

to obtain an existing function description. It then calls merge-ignore to create

a new function description. Finally, it calls augment-with-function-description
in order to create and return a new environment.

Annotating a function with a dynamic-extent declaration

add-function-dynamic-extent client environment name [Generic Function]

This function returns a new environment that is like environment except that
the function named name has been annotated with an dynamic-extent decla-
ration.

This function can be used only when name names a local function.

3.4. HIGH-LEVEL ANNOTATION FUNCTIONS 31

add-function-dynamic-extent client (environment environment) name [Method)]

This is the main method on add-function-dynamic-extent. It calls describe-function
to obtain an existing variable description. It then calls merge-dynamic-extent

to create a new variable description. Finally, it calls augment-with-function-description
in order to create and return a new environment.

Annotating a function with an inline declaration

add-inline client environment name inline [Generic Function]

This function returns a new environment that is like environment except that
the function named name has been annotated with an inline declaration.

The argument inline must be the symbol inline or the symbol notinline.

This function can be used when name names a local function or a local macro.
add-inline client (environment environment) name inline [Method)]

This is the main method on add-inline. It calls describe-function to obtain
an existing function description. It then calls merge-inline to create a new
function description. Finally, it calls augment-with-function-description
in order to create and return a new environment.

3.4.3 Adding blocks

add-block client environment name &optional identity [Generic Function]

This function returns a new environment that is like environment except that
it has been augumented with a block named name, which must be a symbol.
The optional argument identity can be supplied by client code to distinguish
different blocks with the same name.

add-block client (environment environment) name &optional identity [Method)]

This is the main method on add-block. It instantiates the class block-description
and then creates a new environment by calling the function augment-with-block-descriptior

32 CHAPTER 3. AUGMENTING THE ENVIRONMENT

3.4.4 Adding tags

add-tag client environment tag &optional identity [Generic Function)]

This function returns a new environment that is like environment except that
it has been augumented with a tag named fag, which must be a go tag, i.e. a
symbol or an integer. The optional argument ¢dentity can be supplied by client
code to distinguish different tags with the same name.

add-tag client (environment environment) tag &optional identity [Method|

This is the main method on add-tag. It instantiates the class tag-description
and then creates a new environment by calling the function augment-with-tag-description.

3.4.5 Annotating the optimize qualities

Annotating optimize with a speed value

add-speed client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a speed quality value.

The argument value must be an integer between 0 and 3.
add-speed client (environment environment) value [Method)]

This is the main method on add-speed. It calls describe-optimize to obtain
the existing optimize description. It then calls merge-speed to create a new
optimize description. Finally, it calls augment-with-optimize-description
in order to create and return a new environment.

Annotating optimize with a compilation-speed value

add-compilation-speed client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a compilation-speed quality
value.

3.4. HIGH-LEVEL ANNOTATION FUNCTIONS 33

The argument value must be an integer between 0 and 3.
add-compilation-speed client (environment environment) value [Method|

This is the main method on add-compilation-speed. It calls describe-optimize

to obtain the existing optimize description. It then calls merge-compilation-speed

to create a new optimize description. Finally, it calls augment-with-optimize-description
in order to create and return a new environment.

Annotating optimize with a debug value

add-debug client environment value [Generic Function)]

This function returns a new environment that is like environment except that
the optimize information has been updated with a debug quality value.

The argument value must be an integer between 0 and 3.
add-debug client (environment environment) value [Method|

This is the main method on add-debug. It calls describe-optimize to obtain
the existing optimize description. It then calls merge-debug to create a new
optimize description. Finally, it calls augment-with-optimize-description
in order to create and return a new environment.

Annotating optimize with a safety value

add-safety client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a safety quality value.

The argument value must be an integer between 0 and 3.
add-safety client (environment environment) value [Method)]

This is the main method on add-safety. It calls describe-optimize to obtain
the existing optimize description. It then calls merge-safety to create a new
optimize description. Finally, it calls augment-with-optimize-description
in order to create and return a new environment.

34 CHAPTER 3. AUGMENTING THE ENVIRONMENT

Annotating optimize with a space value

add-space client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a space quality value.

The argument value must be an integer between 0 and 3.
add-space client (environment environment) value [Method|

This is the main method on add-space. It calls describe-optimize to obtain
the existing optimize description. It then calls merge-space to create a new
optimize description. Finally, it calls augment-with-optimize-description
in order to create and return a new environment.

Bibliography

[Ste90] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.). Digital
Press, Newton, MA, USA, 1990.

35

Index

:class-name Initarg, [9]
:compilation-speed Initarg,
:debug Initarg,
:dynamic-extent Initarg,
:expander Initarg, 9]
:expansion Initarg,
:identity Initarg,
:ignore Initarg,
:inline Initarg,
:metaclass-name Initarg,
:method-class-name Initarg,
:name Initarg,
:safety Initarg,
:space Initarg,
:speed Initarg,
:superclass-names Initarg,
:type Initarg,
add-block Gemneric Function,
add-block Method,
add-compilation-speed Generic Func-
tion, [32]
add-compilation-speed Method,
add-debug Generic Function,
add-debug Method,

add-function-ignore Generic Func-
tion, [30]
add-function-ignore Method,
add-function-type Generic Function,
29
add-function-type Method,
add-inline Generic Function,
add-inline Method,
add-lexical-variable Generic Func-
tion, [26]
add-lexical-variable Method,
add-local-function Generic Function,
29
add-local-function Method,
add-local-macro Generic Function,
add-local-macro Method,
add-local-symbol-macro Generic Func-
tion, [27]
add-local-symbol-macro Method,
add-safety Generic Function,
add-safety Method,
add-space Generic Function,
add-space Method,
add-special-variable Generic Func-

add-function-dynamic-extent Generic Func- tion, 26]

tion, [30]

add-special-variable Method,

add-function-dynamic-extent Methodadd-speed Generic Function,

1

36

add-speed Method,

INDEX

add-tag Generic Function,
add-tag Method,

37

2

describe-optimize Generic Function,

add-variable-dynamic-extent Generic Func- [0

tion,

describe-tag Generic Function,

add-variable-dynamic-extent Methoddescribe-variable Generic Function,

28
add-variable-ignore Generic Func-
tion, [2§]
add-variable-ignore Method,
add-variable-type Generic Function,
A
add-variable-type Method,

Y
dynamic-extent-mixin Class,
dynamic-extent Method,
expander-mixin Class, [9]
expander Method, [9]
expansion-mixin Class,
expansion Method,

augment-with-block-description Genfuwdtina-description Class,

tion,

augment-with-function-description

Generic Function,

generic-function-description Class,
16l
global-function-description Class,

augment-with-tag-description Generic Func-

tion, [20]

global-macro-description Class,

augment-with-variable-description global-symbol-macro-description Class,

Generic Function,

authentic-function-description Classdentity-mixin Class,

04

identity Method,

authentic-variable-description Clasﬁgnore—mixin Class,

13l
block-description Class,
class-description Class,
class-name-mixin Class, [J]
class-name Method, [J]
compilation-speed-mixin Class,
compilation-speed Method,

ignore Method,

inline-mixin Class, [9]

inline Method,

invalid-description-for-merging-compilation-s
Condition,

invalid-description-for-merging-debug-inform:

Condition,

constant-variable-description Classinvalid-description-for-merging-dynamic-exter

1
debug-mixin Class,
debug Method,
describe-block Generic Function,
describe-class Generic Function, @]
describe-function Generic Function,

Condition,
invalid-description-for-merging-ignore-inforr
Condition,
invalid-description-for-merging-inline-inforr
Condition,

invalid-description-for-merging-safety-inforr

38

Condition,

INDEX

method-class-name-mixin Class,

invalid-description-for-merging-smeeehddfokassimame Method,

Condition,

name-mixin Class,

invalid-description-for-merging-spesme i trad il

Condition,

no-block-description Condition,

invalid-description-for-merging-type-ddfegmddsoription Condition, [0]

Condition,

lexical-variable-description Class,

B!
local-function-description Class,

local-macro-description Class,

no-function-description Condition,

no-tag-description Condition,

no-variable-description Condition,
[

optimize-description Class,

local-symbol-macro-description Classafety-mixin Class,

11
macro-description Class,

safety Method,
space-mixin Class,

merge-compilation-speed Generic Fun@-pace Method,

tion, [24]

merge-compilation-speed Method,

merge-debug Generic Function,
merge-debug Method,
merge-dynamic-extent Generic Func-
tion, [22]
merge-dynamic-extent Method,
merge-ignore Generic Function,
merge-ignore Method,
merge-inline Generic Function,
merge-inline Method,
merge-safety Generic Function,
merge-safety Method,
merge-space Generic Function,
merge-space Method,
merge-speed Generic Function,
merge-speed Method,
merge-type Generic Function,
merge-type Method,
metaclass-name-mixin Class,
metaclass-name Method,

special-operator-description Class,
[16]
special-variable-description Class,
14
speed-mixin Class,
speed Method,
superclass-names-mixin Class,
superclass-names Method,
symbol-macro-description Class,
tag-description Class,
type-mixin Class,
type Method,
variable-description Class,
augment-with-block-description
Method,
augment-with-function-description
Method,
augment-with-optimize-description
Generic Function,
augment-with-optimize-description

Method,

INDEX 39

augment-with-tag-description

Method,
augment-with-variable-description

Method,
merge-compilation-speed

Method,
merge-debug

Method,
merge-ignore

Method,
merge-inline

Method,
merge-safety

Method,
merge-space

Method,
merge-speed

Method,
merge-type

Method,

	Introduction
	Querying the environment
	Query functions
	Variable information
	Function information
	Block information
	Tag information
	Class information
	Optimize information

	Mixin classes
	name-mixin
	identity-mixin
	type-mixin
	ignore-mixin
	dynamic-extent-mixin
	expansion-mixin
	expander-mixin
	class-name-mixin
	inline-mixin
	method-class-name-mixin
	speed-mixin
	compilation-speed-mixin
	debug-mixin
	space-mixin
	safety-mixin
	superclass-names-mixin
	metaclass-name-mixin

	Abstract query classes
	Instantiable classes
	Variable description
	Function description
	Block description
	Tag description
	Class description
	Optimize description

	Augmenting the environment
	Creating new description
	Low-level augmentation functions
	Merging descriptions
	High-level annotation functions
	Adding and annotating variables
	Adding and annotating functions
	Adding blocks
	Adding tags
	Annotating the optimize qualities

	Bibliography
	Index

