
Trucler

A Common Lisp environment protocol

and its implementation.

Robert Strandh

2019

ii

Contents

1 Introduction 1

I Protocol speci�cation 3

2 System de�nition and packages 5

3 Querying the environment 7

3.1 Query functions . 8

3.1.1 Variable information . 8

3.1.2 Function information . 8

3.1.3 Block information . 9

3.1.4 Tag information . 9

3.1.5 Optimize information 9

3.1.6 Declarations information 9

3.2 Mixin classes . 10

3.2.1 name-mixin . 10

3.2.2 identity-mixin . 10

3.2.3 type-mixin . 10

3.2.4 ignore-mixin . 11

3.2.5 dynamic-extent-mixin 11

3.2.6 value-mixin . 12

3.2.7 compiler-macro-mixin 12

3.2.8 expansion-mixin . 12

3.2.9 expander-mixin . 13

3.2.10 inline-mixin . 13

3.2.11 inline�data-mixin . 13

iii

iv CONTENTS

3.2.12 speed-mixin . 14

3.2.13 compilation-speed-mixin 14

3.2.14 debug-mixin . 15

3.2.15 space-mixin . 15

3.2.16 safety-mixin . 16

3.2.17 declarations-mixin . 16

3.3 Abstract query classes . 16

3.4 Instantiable classes . 18

3.4.1 Variable description . 18

3.4.2 Function description . 19

3.4.3 Block description . 20

3.4.4 Tag description . 20

3.4.5 Optimize description . 20

3.4.6 Declarations description 20

4 Augmenting the environment 23

4.1 Creating new description . 23

4.2 High-level augmentation functions 23

4.2.1 Adding and annotating variables 23

4.2.2 Adding and annotating functions 25

4.2.3 Adding blocks . 27

4.2.4 Adding tags . 27

4.2.5 Annotating the optimize qualities 28

4.3 Grouping Environment Augmentations 29

4.3.1 Creating an Environment Builder 29

4.3.2 Finalizing an Environment Builder 29

II Customization 31

5 Customizing with existing lexical environments 33

5.1 Representing the global environment 33

5.2 Customizing the query functions 34

5.3 Customizing the augmentation functions 34

6 The reference implementation 35

6.1 System and package . 35

6.2 Client and environment . 35

CONTENTS v

6.3 Low-level augmentation functions 35
6.4 Merging descriptions . 37
6.5 Methods on high-level augmentation functions 43

6.5.1 Adding and annotating variables 43
6.5.2 Adding and annotating functions 44
6.5.3 Adding blocks . 46
6.5.4 Adding tags . 46
6.5.5 Annotating the optimize qualities 47

Bibliography 49

Index 50

vi CONTENTS

Chapter 1

Introduction

In section 8.5 of the second edition of the book �Common Lisp, the Language�
(also known as CLtL2) by Guy Steele [Ste90], a protocol for accessing compile-
time environments is de�ned. That protocol has two main problems:

1. It is incomplete. It does not provide for a way to query the environment
for description about blocks or tags.

2. It is not extensible. In order for an implementation to make one of the
query functions return more information, additional return values would
have to be de�ned. However, such a change is not considered backward
compatible, so this kind of extension is not recommended.

Trucler introduces a protocol that solves these problems as follows:

1. It contains additional query and augmentation functions for blocks and
tags.

2. Instead of returning multiple values, the query functions return standard
objects. Accessors specialized to the classes of those objects provide the
information that the protocol in CLtL2 provides as multiple values.

The term language processor is used in this document to mean a program that
processes source code, such as a compiler or some other code walker, with

1

2 CHAPTER 1. INTRODUCTION

the intent of either modifying the source code, or of generating some di�erent
representation for it.

In addition to providing a mechanism that solves the problems of the protocol
presented in CLtL2, we also add several new features that a language processor
must use to process source code.

The term client code is used in this document to mean two things:

1. Code that is speci�c to a Common Lisp implementation and that pro-
vides specialized code for one or more generic functions de�ned in this
document. Typically, such code will depend on the precise representation
of lexical environments used by the implementation.

2. Code that is speci�c to the language processor that uses Trucler to obtain
information about program elements in the source code that it processes.

Both these types of specialization are introduced by means of a parameter to
Trucler functions called client. Typically, a Common Lisp implementation
will provide a class such that an instance represents the implementation, and
also provide methods on Trucler functions, specialized to this class. A language
processor that needs further specialization can then de�ne a subclass of this
class, so that these methods can be overridden or extended.

Part I

Protocol speci�cation

3

Chapter 2

System de�nition and packages

The ASDF system de�nition for the protocol part of Trucler is called trucler-base.

The protocol part of Trucler de�nes a single package named trucler.

5

6 CHAPTER 2. SYSTEM DEFINITION AND PACKAGES

Chapter 3

Querying the environment

In this chapter, we describe classes and functions that are used by the language
processor to query the environment concerning information about program
elements that the language processor needs in order to determine how to process
those program elements.

When the language processor calls a generic query function, it passes two or
three arguments, depending on the function it calls. The �rst argument is
called the client. Trucler does not specialize to this argument, but client
code should de�ne a standard class and pass an instance of that class for this
argument. Client code can then de�ne auxiliary methods that specialize to this
class on the query generic functions. The second argument is the environment
concerned by the query. Client code must supply methods on these functions,
specialized to its particular representation of its global environments. If the
client does not have an explicit representation of its global environment (as
is usually the case), it must nevertheless de�ne a dummy standard class to
specialize to. Contrary to global environments, Trucler provides its own repre-
sentation of lexical environments, and it provides methods on the query func-
tions, specialized to the classes de�ned to represent those lexical environments.
Client code that wants to use a di�erent representation of lexical environments
than the one provided by Trucler must also provide methods specialized to its
lexical environment classes.

The primary methods on the query functions should return instances of the

7

8 CHAPTER 3. QUERYING THE ENVIRONMENT

classes described in this chapter. Any such instance contains all available in-
formation about some program element in that particular environment. This
information must typically be assembled from di�erent parts of the environ-
ment. For that reason, client code typically creates a new instance whenever
a query function is called, rather than attempting to store such instances in
the environment. If any of these client-supplied methods fails to accomplish
its task, it should return nil.

Client code is free to de�ne subclasses of the classes described here, for instance
in order to represent implementation-speci�c information about the program
elements. Client code would then typically also provide auxiliary methods or
overriding primary methods on the compilation functions that handle these
classes.

3.1 Query functions

3.1.1 Variable information

⇒ describe-variable client environment name [Generic Function]

This function is called by the language processor whenever a symbol in a vari-

able position is to be compiled. If successful, it returns an instance of one of
the classes described in Section 3.4.1. If no relevant information related to the
name name exists in the current environment, then this function returns nil.

3.1.2 Function information

⇒ describe-function client environment name [Generic Function]

This function is called by the language processor whenever a symbol in a func-

tion position is to be compiled or whenever a function name is found in a
context where it is known to refer to a function. If successful, it returns an
instance of one of the classes described in Section 3.4.2. If no relevant infor-
mation related to the name name exists in the current environment, then this
function returns nil.

3.1. QUERY FUNCTIONS 9

3.1.3 Block information

⇒ describe-block client environment name [Generic Function]

This function is called by the language processor whenever a symbol referring
to a block is found, typically in a return-from form. If successful, it returns
an instance of the class described in Section 3.4.3. If no relevant information
related to the name name exists in the current environment, then this function
returns nil

3.1.4 Tag information

⇒ describe-tag client environment tag [Generic Function]

This function is called by the language processor whenever a symbol or an
integer referring to a tag is found, typically in a go form. If successful, it returns
an instance of the class described in Section 3.4.4. If no relevant information
related to the name name exists in the current environment, then this function
returns nil.

3.1.5 Optimize information

⇒ describe-optimize client environment [Generic Function]

This function is called by the language processor in order to determine the
values of the optimize qualities in e�ect in environment. Client-supplied
methods on this function must always return a valid instance of the class
optimize-description described in Section 3.4.5.

3.1.6 Declarations information

⇒ describe-declarations client environment [Generic Function]

Client-supplied methods on this function must always return a valid instance
of the class declarations-description. It returns an instance of the class
described in Section 3.4.6.

10 CHAPTER 3. QUERYING THE ENVIRONMENT

3.2 Mixin classes

For maximum �exibility, each query class is the subclass of one or more mixin
classes, each one providing one single feature. That feature is represented as a
slot with an initarg, a reader, an initform, and a type.

3.2.1 name-mixin

⇒ name-mixin [Class]

This class is a superclass of query classes that require a name to identify the
information supplied by the class instances.

⇒ :name [Initarg]

⇒ name (description name-mixin) [Method]

Given an instance of the class name-mixin, this method returns the name
information, as supplied by the initarg :name.

3.2.2 identity-mixin

⇒ identity-mixin [Class]

This class is a superclass of query classes that require some kind of identity to
distinguish instances of the query class that have the same name.

⇒ :identity [Initarg]

⇒ identity (description identity-mixin) [Method]

Given an instance of the class identity-mixin, this method returns the iden-
tity information, as supplied by the initarg :idenity.

3.2.3 type-mixin

⇒ type-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have a type.

3.2. MIXIN CLASSES 11

⇒ :type [Initarg]

If this initarg is not supplied, it defaults to t.

⇒ type (description type-mixin) [Method]

Given an instance of the class type-mixin, this method returns the type infor-
mation, as supplied by the initarg :type.

3.2.4 ignore-mixin

⇒ ignore-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can be declared ignore or ignorable.

⇒ :ignore [Initarg]

The value of this initarg must be one of the symbols ignore, ignorable, and
nil from the common-lisp package. If this initarg is not given, it defaults to
nil.

⇒ ignore (description ignore-mixin) [Method]

Given an instance of the class ignore-mixin, this method returns the ignore
information, as supplied by the initarg :ignore.

3.2.5 dynamic-extent-mixin

⇒ dynamic-extent-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can be declared dynamic-extent.

⇒ :dynamic-extent [Initarg]

The value of this initarg is a generalized Boolean. If this initarg is not given,
it defaults to nil.

⇒ dynamic-extent (description dynamic-extent-mixin) [Method]

Given an instance of the class dynamic-extent-mixin, this method returns
the dynamic-extent information, as supplied by the initarg :dynamic-extent.

12 CHAPTER 3. QUERYING THE ENVIRONMENT

3.2.6 value-mixin

⇒ value-mixin [Class]

This class is a superclass of query classes that provide information about entities
that have a value. In particular, it is a superclass of the class constant-variable-description.

⇒ :value [Initarg]

⇒ value (description value-mixin) [Method]

Given an instance of the class value-mixin, this method returns the value
information, as supplied by the initarg :value.

3.2.7 compiler-macro-mixin

⇒ compiler-macro-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have a compiler-macro associated with them. In particular, it is a su-
perclass of the classes global-function-description and global-macro-description.

⇒ :compiler-macro [Initarg]

⇒ compiler-macro (description compiler-macro-mixin) [Method]

Given an instance of the class compiler-macro-mixin, this method returns
the compiler-macro information, as supplied by the initarg :compiler-macro.

3.2.8 expansion-mixin

⇒ expansion-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have an expansion. In particular, it is a superclass of the abstract
class symbol-macro-description.

⇒ :expansion [Initarg]

⇒ expansion (description expansion-mixin) [Method]

Given an instance of the class expansion-mixin, this method returns the ex-
pansion information, as supplied by the initarg :expansion.

3.2. MIXIN CLASSES 13

3.2.9 expander-mixin

⇒ expander-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have an expander function. In particular, it is a superclass of the
abstract class macro-description.

⇒ :expander [Initarg]

⇒ expander (description expander-mixin) [Method]

Given an instance of the class expander-mixin, this method returns the ex-
pander information, as supplied by the initarg :expander.

3.2.10 inline-mixin

⇒ inline-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have inline information. In particular, it is a superclass of the classes
authentic-function-description and global-macro-description.

⇒ :inline [Initarg]

Possible values for this initarg are nil, inline, and notinline, all symbols in
the common-lisp package. The value nil means that no inline information has
been provided, and this is the default value if the initarg is omitted.

⇒ inline (description inline-mixin) [Method]

Given an instance of the class inline-mixin, this method returns the inline
information, as supplied by the initarg :inline.

3.2.11 inline�data-mixin

⇒ inline-data-mixin [Class]

This class is a superclass of query classes that provide information about en-
tities that can have inline data. In particular, it is a superclass of the class
authentic-function-description.

14 CHAPTER 3. QUERYING THE ENVIRONMENT

Inline data can be used by client code to store data about how to inline a
particular function. This data can then be used when a call to the function is
processed in order to replace that call with an inline version of the function.

⇒ :inline-data [Initarg]

The value of this argument can be any datum used by client code to represent
the function for the purpose of inlining it. The value nil means that no inline
information has been provided, and this is the default value if the initarg is
omitted.

⇒ inline-data (description inline-data-mixin) [Method]

Given an instance of the class inline-data-mixin, this method returns the
inline data, as supplied by the initarg :inline-data.

3.2.12 speed-mixin

⇒ speed-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have speed information. In particular, it is a superclass of the class
optimize-description.

⇒ :speed [Initarg]

The value of this initarg must be an integer between 0 and 3 inclusive.

⇒ speed (description speed-mixin) [Method]

Given an instance of the class speed-mixin, this method returns the compilation-
speed information, as supplied by the initarg :speed.

3.2.13 compilation-speed-mixin

⇒ compilation-speed-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have compilation-speed information. In particular, it is a superclass
of the class optimize-description.

⇒ :compilation-speed [Initarg]

3.2. MIXIN CLASSES 15

The value of this initarg must be an integer between 0 and 3 inclusive.

⇒ compilation-speed (description compilation-speed-mixin) [Method]

Given an instance of the class compilation-speed-mixin, this method returns
the compilation-speed information, as supplied by the initarg :compilation-speed.

3.2.14 debug-mixin

⇒ debug-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have debug information. In particular, it is a superclass of the class
optimize-description.

⇒ :debug [Initarg]

The value of this initarg must be an integer between 0 and 3 inclusive.

⇒ debug (description debug-mixin) [Method]

Given an instance of the class debug-mixin, this method returns the debug
information, as supplied by the initarg :debug.

3.2.15 space-mixin

⇒ space-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have space information. In particular, it is a superclass of the class
optimize-description.

⇒ :space [Initarg]

The value of this initarg must be an integer between 0 and 3 inclusive.

⇒ space (description space-mixin) [Method]

Given an instance of the class space-mixin, this method returns the space
information, as supplied by the initarg :space.

16 CHAPTER 3. QUERYING THE ENVIRONMENT

3.2.16 safety-mixin

⇒ safety-mixin [Class]

This class is a superclass of query classes that provide information about entities
that can have safety information. In particular, it is a superclass of the class
optimize-description.

⇒ :safety [Initarg]

The value of this initarg must be an integer between 0 and 3 inclusive.

⇒ safety (description safety-mixin) [Method]

Given an instance of the class safety-mixin, this method returns the safety
information, as supplied by the initarg :safety.

3.2.17 declarations-mixin

⇒ declarations-mixin [Class]

This class is a superclass of query classes that provide information about de�ned
nonstandard declaration identi�ers. In particular, it is a superclass of the class
declarations-description.

⇒ :declarations [Initarg]

The value of this initarg must be a list of declaration identi�ers, i.e., symbols.

⇒ declarations (description descriptions-mixin) [Method]

Given an instance of the class declarations-mixin, this method returns the
declarations information, as supplied by the initarg :declarations.

3.3 Abstract query classes

⇒ variable-description [Class]

This abstract class is the superclass of every query class returned by a call
to the generic function describe-variable. It is a subclass of the classes
name-mixin and ignore-mixin.

3.3. ABSTRACT QUERY CLASSES 17

⇒ authentic-variable-description [Class]

This abstract class is a subclass of the classes variable-description, type-mixin,
and dynamic-extent-mixin.

It is a superclass of the instantiable class lexical-variable-description and
of the abstract class special-variable-description.

⇒ special-variable-description [Class]

This abstract class is a subclass of the class authentic-variable-description.

It is a superclass of the two instantiable classes local-special-variable-description
and global-special-variable-description.

⇒ symbol-macro-description [Class]

This abstract class is a subclass of the classes variable-description, type-mixin,
and expansion-mixin.

It is a superclass of the two instantiable classes local-symbol-macro-description
and global-symbol-macro-description.

⇒ function-description [Class]

This abstract class is the superclass of every query class returned by a call to the
generic function describe-function. It is a subclass of the class name-mixin.

⇒ authentic-function-description [Class]

This abstract class is a subclass of the classes function-description, type-mixin,
inline-mixin, inline-data-mixin, ignore-mixin, and dynamic-extent-mixin.

It is a superclass of the two instantiable classes local-function-description
and global-function-description.

⇒ macro-description [Class]

This abstract class is a subclass of the classes function-description and
expander-mixin.

It is a superclass of the two instantiable classes local-macro-description and
global-macro-description.

18 CHAPTER 3. QUERYING THE ENVIRONMENT

3.4 Instantiable classes

3.4.1 Variable description

⇒ lexical-variable-description [Class]

This class represents information about lexical variables. An instance of this
class is returned by a call to describe-variable when it turns out that the
symbol passed as an argument refers to a lexical variable.

This class is a subclass of the classes authentic-variable-description and
identity-mixin.

⇒ local-special-variable-description [Class]

This class represents information about local special variables. An instance of
this class is returned by a call to describe-variable when it turns out that
the symbol passed as an argument refers to a local special variable.

This class is a subclass of the class special-variable-description.

⇒ global-special-variable-description [Class]

This class represents information about global special variables. An instance
of this class is returned by a call to describe-variable when it turns out that
the symbol passed as an argument refers to a global special variable.

This class is a subclass of the class special-variable-description.

⇒ constant-variable-description [Class]

This class represents information about constant variables. An instance of this
class is returned by a call to describe-variable when it turns out that the
symbol passed as an argument refers to a constant variable.

This class is a subclass of the classes variable-description and value-mixin.

⇒ global-symbol-macro-description [Class]

This class is a subclass of symbol-macro-description. It is returned by a call
to describe-variable when the name is de�ned as a global symbol macro, as
de�ned by define-symbol-macro.

⇒ local-symbol-macro-description [Class]

3.4. INSTANTIABLE CLASSES 19

This class is a subclass of symbol-macro-description. It is returned by a call
to describe-variable when the name is de�ned as a local symbol macro, as
de�ned by symbol-macrolet.

3.4.2 Function description

⇒ local-function-description [Class]

This class represents information about local functions introduced by flet or
labels. An instance of this class is returned by a call to describe-function

when it turns out that the function name passed as an argument refers to a
local function.

This class is a subclass of authentic-function-description and identity-mixin.

⇒ global-function-description [Class]

This class represents information about global functions. An instance of this
class is returned by a call to describe-function when it turns out that the
function name passed as an argument refers to a global function.

This class is a subclass of authentic-function-description and compiler-macro-mixin.

⇒ generic-function-description [Class]

This class is a subclass of global-function-description.

⇒ local-macro-description [Class]

This class represents information about local macros introduced by macrolet.
An instance of this class is returned by a call to describe-function when it
turns out that the function name passed as an argument refers to a local macro.

This class is a subclass of macro-description and ignore-mixin.

⇒ global-macro-description [Class]

This class represents information about global macros introduced by macrolet.
An instance of this class is returned by a call to describe-function when it
turns out that the function name passed as an argument refers to a global
macro.

This class is a subclass of macro-description, inline-mixin, and compiler-macro-mixin.

20 CHAPTER 3. QUERYING THE ENVIRONMENT

⇒ special-operator-description [Class]

This class represents information about special operators. An instance of this
class is returned by a call to describe-function when it turns out that the
function name passed as an argument refers to a special operator.

This class is a subclass of the class function-description.

3.4.3 Block description

⇒ block-description [Class]

This class represents information about blocks introduced by block. An in-
stance of this class is returned by a call to describe-block when the symbol
passed as an argument refers to a block.

This class is a subclass of the classes name-mixin and identity-mixin.

3.4.4 Tag description

⇒ tag-description [Class]

This class represents information about tags introduced by tagbody. An in-
stance of this class is returned by a call to describe-tag when the name (which
must be a symbol or an integer) passed as an argument refers to a tag.

This class is a subclass of the classes name-mixin and identity-mixin.

3.4.5 Optimize description

⇒ optimize-description [Class]

This class is a subclass of speed-mixin, compilation-speed-mixin, debug-mixin,
space-mixin, and safety-mixin.

3.4.6 Declarations description

⇒ declarations-description [Class]

3.4. INSTANTIABLE CLASSES 21

This class is a subclass of declarations-mixin. It has information about the
list of declarations proclaimed with the declaration proclamation.

22 CHAPTER 3. QUERYING THE ENVIRONMENT

Chapter 4

Augmenting the environment

4.1 Creating new description

In order to create a new description, make-instance must be called, providing
values for all the initialization arguments corresponding to features that do not
have any initialization forms.

4.2 High-level augmentation functions

4.2.1 Adding and annotating variables

Adding a lexical variable

⇒ add-lexical-variable client environment name &optional identity [Generic Function]

This function returns a new environment that is like environment except that
it has been augumented with a lexical variable named name. The optional
argument identity can be supplied by client code to distinguish di�erent lexical
variables with the same name.

23

24 CHAPTER 4. AUGMENTING THE ENVIRONMENT

Adding a local special variable

⇒ add-local-special-variable client environment name [Generic Function]

This function returns a new environment that is like environment except that
it has been augumented with a local special variable named name.

Adding a local symbol macro

⇒ add-local-symbol-macro client environment name expansion [Generic Function]

This function returns a new environment that is like environment except that it
has been augmented with a local symbol macro named name, with the expansion
expansion

Annotating a variable with a type

⇒ add-variable-type client environment name type [Generic Function]

This function returns a new environment that is like environment except that
the variable named name has been annotated with the type speci�er type.

The type of the variable returned when the new environment is queried for the
variable named name will have a new type that is the conjunction of type and
the type it had in environment.

This function can be used when name names a lexical variable, a special vari-
able, or a symbol macro, but not when name names a constant variable.

Annotating a variable with an ignore declaration

⇒ add-variable-ignore client environment name ignore [Generic Function]

This function returns a new environment that is like environment except that
the variable named name has been annotated with an ignore declaration.

The argument ignore must be the symbol ignore or the symbol ignorable.

This function can be used when name names a lexical variable or a local symbol

4.2. HIGH-LEVEL AUGMENTATION FUNCTIONS 25

macro.

Annotating a variable with a dynamic-extent declaration

⇒ add-variable-dynamic-extent client environment name [Generic Function]

This function returns a new environment that is like environment except that
the variable named name has been annotated with an dynamic-extent decla-
ration.

This function can be used only when name names a lexical variable.

4.2.2 Adding and annotating functions

Adding a local function

⇒ add-local-function client environment name &optional identity [Generic Function]

This function returns a new environment that is like environment except that
it has been augumented with a local function named name. The optional argu-
ment identity can be supplied by client code to distinguish di�erent functions
with the same name.

Adding a local macro

⇒ add-local-macro client environment name expander [Generic Function]

This function returns a new environment that is like environment except that
it has been augmented with a local macro named name. The argument ex-

pander is a macro-expansion function that takes two arguments, a form and
an environment.

Annotating a function with a type

⇒ add-function-type client environment name type [Generic Function]

26 CHAPTER 4. AUGMENTING THE ENVIRONMENT

This function returns a new environment that is like environment except that
the function named name has been annotated with the type speci�er type.

The type of the function returned when the new environment is queried for the
function named name will have a new type that is the conjunction of type and
the type it had in environment.

This function can be used when name names a local function or a global func-
tion.

Annotating a function with an ignore declaration

⇒ add-function-ignore client environment name ignore [Generic Function]

This function returns a new environment that is like environment except that
the function named name has been annotated with an ignore declaration.

The argument ignore must be the symbol ignore or the symbol ignorable.

This function can be used when name names a local function or a local macro.

Annotating a function with a dynamic-extent declaration

⇒ add-function-dynamic-extent client environment name [Generic Function]

This function returns a new environment that is like environment except that
the function named name has been annotated with an dynamic-extent decla-
ration.

This function can be used only when name names a local function.

Annotating a function with an inline declaration

⇒ add-inline client environment name inline [Generic Function]

This function returns a new environment that is like environment except that
the function named name has been annotated with an inline declaration.

The argument inline must be the symbol inline or the symbol notinline.

4.2. HIGH-LEVEL AUGMENTATION FUNCTIONS 27

This function can be used when name names a local or a global function.

Annotating a function with inline data

⇒ add-inline-data client environment name inline-data [Generic Function]

This function returns a new environment that is like environment except that
the function named name has been annotated with inline data.

Inline data can be any datum that client code uses in order to make it possible
for the corresponding function to be inlined when a call to it is detected.

Therefore, the argument inline-data can be any datum.

This function can be used when name names a local or a global function.

4.2.3 Adding blocks

⇒ add-block client environment name &optional identity [Generic Function]

This function returns a new environment that is like environment except that
it has been augumented with a block named name, which must be a symbol.
The optional argument identity can be supplied by client code to distinguish
di�erent blocks with the same name.

4.2.4 Adding tags

⇒ add-tag client environment tag &optional identity [Generic Function]

This function returns a new environment that is like environment except that
it has been augumented with a tag named tag, which must be a go tag, i.e. a
symbol or an integer. The optional argument identity can be supplied by client
code to distinguish di�erent tags with the same name.

28 CHAPTER 4. AUGMENTING THE ENVIRONMENT

4.2.5 Annotating the optimize qualities

Annotating optimize with a speed value

⇒ add-speed client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a speed quality value.

The argument value must be an integer between 0 and 3.

Annotating optimize with a compilation-speed value

⇒ add-compilation-speed client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a compilation-speed quality
value.

The argument value must be an integer between 0 and 3.

Annotating optimize with a debug value

⇒ add-debug client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a debug quality value.

The argument value must be an integer between 0 and 3.

Annotating optimize with a safety value

⇒ add-safety client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a safety quality value.

The argument value must be an integer between 0 and 3.

4.3. GROUPING ENVIRONMENT AUGMENTATIONS 29

Annotating optimize with a space value

⇒ add-space client environment value [Generic Function]

This function returns a new environment that is like environment except that
the optimize information has been updated with a space quality value.

The argument value must be an integer between 0 and 3.

4.3 Grouping Environment Augmentations

Each environment augmentation function from section 4.2 returns a new, aug-
mented environment. This can be wasteful in case multiple augmentations
shall be made simultaneously. In this section, we describe a protocol that al-
lows multiple augmentations to be grouped together, such that only a single,
new environment needs to be created independently of the number of augmen-
tations.

4.3.1 Creating an Environment Builder

⇒ make-environment-builder client environment [Generic Function]

This function creates an environment builder � an object that is suitable as a
second argument to all environment augmentation functions but that is itself
not a valid environment.

4.3.2 Finalizing an Environment Builder

⇒ finalize-environment-builder client environment-builder [Generic Function]

This function returns an environment that is equivalent to the one that was
passed to make-environment-builder, but with all the augmentations that
have been applied to the environment builder before this call.

30 CHAPTER 4. AUGMENTING THE ENVIRONMENT

Part II

Customization

31

Chapter 5

Customizing with existing

lexical environments

A typical existing Common Lisp implementation has its own representation
of lexical environments and no explicit representation of the global environ-
ment. In this chapter, we describe the kind of customization that such an
implementation needs to provide in order to use Trucler.

5.1 Representing the global environment

Despite the fact that a typical existing implementation has no �rst-class ob-
ject representing the global environment, in order to customize Trucler, the
implementation should nevertheless de�ne a standard class representing such
a hypothetical �rst-class environment. In instance of this environment object
must be passed to the language processor, so that when the language proces-
sor queries the null lexical environment for some information, this instance is
passed to the query functions.

33

34CHAPTER 5. CUSTOMIZINGWITH EXISTING LEXICAL ENVIRONMENTS

5.2 Customizing the query functions

The following query functions are subject to customization:

� describe-variable

� describe-function

� describe-block

� describe-tag

� describe-optimize

These functions are described in Section 3.1.

Only those functions that are actually called by the language processor need
be customized.

The customization consists of supplying methods on the relevant query func-
tions, specialized to:

� the speci�c client class chosen by the implementation, and

� the classes representing environments in the implementation.

Typically, two methods must be supplied, one specialized to the lexical envi-
ronment class of the implementation, and another one, specialized to the global
environment class, as describe in Section 5.1. These methods should return
instances of the instantiable classes described in Section 3.4.

5.3 Customizing the augmentation functions

For an existing implementation, the easiest way to customize environment aug-
mentation, is to target only the high-level augmentation functions described in
Section 4.2.

Chapter 6

The reference implementation

6.1 System and package

The ASDF system name for the reference implementation is trucler-reference
and the package name is trucler-reference as well.

6.2 Client and environment

The reference implementation de�nes a client class, an instance of which is to
be used to pass as the corresponding client argument to protocol functions
and that class is named client.

Similarly, the reference implementation de�nes an environment class that is
used and created by the augmentation methods, and that class is named
environment.

6.3 Low-level augmentation functions

In this section, we describe basic functions for augmenting an environment,
given an old environment and a description.

35

36 CHAPTER 6. THE REFERENCE IMPLEMENTATION

⇒ augment-with-variable-description client environment description [Generic Function]

This function is used to create a new environment object from an existing
environment object and an instance of the class variable-description.

⇒ augment-with-variable-description

client
(environment environment)
(description variable-description) [Method]

This default method returns a new environment object which is like the one
passed as an argument, except that description will shadow any variable de-
scription with the same name.

⇒ augment-with-function-description client environment function-description [Generic Function]

This function is used to create a new environment object from an existing
environment object and an instance of the class function-description.

⇒ augment-with-function-description

client
(environment environment)
(function-description function-description) [Method]

This default method returns a new environment object which is like the one
passed as an argument, except that function-description will shadow any func-
tion description with the same name.

⇒ augment-with-block-description client environment block-description [Generic Function]

This function is used to create a new environment object from an existing
environment object and an instance of the class block-description.

⇒ augment-with-block-description

client
(environment environment)
(block-description block-description) [Method]

This default method returns a new environment object which is like the one
passed as an argument, except that block-description will shadow any block
description with the same name.

⇒ augment-with-tag-description client environment tag-description [Generic Function]

6.4. MERGING DESCRIPTIONS 37

This function is used to create a new environment object from an existing
environment object and an instance of the class tag-description.

⇒ augment-with-tag-description

client
(environment environment)
(tag-description tag-description) [Method]

This default method returns a new environment object which is like the one
passed as an argument, except that tag-description will shadow any tag de-
scription with the same name.

⇒ augment-with-optimize-description

client environment optimize-description [Generic Function]

This function is used to create a new environment object from an existing
environment object and an instance of the class optimize-description.

⇒ augment-with-optimize-description

client
(environment environment)
(optimize-description optimize-description) [Method]

This default method returns a new environment object which is like the one
passed as an argument, except that optimize-description will shadow any pre-
vious optimize description.

6.4 Merging descriptions

We use the term merging to mean the creation of a new description from an
existing description plus some additional information such as type or dynamic
extent.

In this section, we describe generic functions that are provided for this purpose.

⇒ merge-type client description type [Generic Function]

Given an instance of the class description and a type descriptor, return a
new instance that is just like description (including the class and the values of
all the slots), except that its type description has been updated according to
that of type.

38 CHAPTER 6. THE REFERENCE IMPLEMENTATION

⇒ invalid-description-for-merging-type-information [Condition]

This condition is signaled by merge-type when the description argument is
not an instance of a class that contains information about type.

⇒ merge-type client description type [Method]

This is the default method provided on merge-type. It signals the condition
invalid-description-for-merging-type-information.

⇒ merge-type

client
(description type-mixin)
type [Method]

This is the main method provided on merge-type and it is specialized to
type-mixin.

⇒ merge-ignore client description ignore [Generic Function]

Given an instance of the class description and one of the symbols cl:ignore
and cl:ignorable, return a new instance that is just like description (including
the class and the values of all the slots), except that its ignore information has
been updated according to that of ignore.

⇒ invalid-description-for-merging-ignore-information [Condition]

This condition is signaled by merge-ignore when the description argument is
not an instance of a class that contains information about ignore.

⇒ merge-ignore client description ignore [Method]

This is the default method provided on merge-ignore. It signals the condition
invalid-description-for-merging-ignore-information.

⇒ merge-ignore

client
(description ignore-mixin)
ignore [Method]

This is the main method provided on merge-ignore and it is specialized to
ignore-mixin.

⇒ merge-dynamic-extent client description [Generic Function]

Given an instance of the class description, return a new instance that is just
like description (including the class and the values of all the slots), except that

6.4. MERGING DESCRIPTIONS 39

its dynamic-extent information has been updated so that it is true.

⇒ invalid-description-for-merging-dynamic-extent-information [Condition]

This condition is signaled by merge-dynamic-extent when the description ar-
gument is not an instance of a class that contains information about dynamic-
extent.

⇒ merge-dynamic-extent client description [Method]

This is the default method provided on merge-dynamic-extent. It signals the
condition invalid-description-for-merging-dynamic-extent-information.

⇒ merge-dynamic-extent client (description dynamic-extent-mixin) [Method]

This is the main method provided on merge-dynamic-extent and it is special-
ized to dynamic-extent-mixin.

⇒ merge-inline client description inline [Generic Function]

Given an instance of the class description and one of the symbols cl:inline
and cl:notinline, return a new instance that is just like description (including
the class and the values of all the slots), except that its inline information has
been updated according to that of inline.

⇒ merge-inline-data client description inline-data [Generic Function]

Given an instance of the class description and any datum chosen by client
code to represent data to be used for inlining, return a new instance that is
just like description (including the class and the values of all the slots), except
that its inline data has been updated according to that of inline-data.

Recall that inline data can be any datum that client code can associate with a
function de�nition so that, when a call to that function is detected, it can be
replaced by an inline version of it.

⇒ invalid-description-for-merging-inline-information [Condition]

This condition is signaled by merge-inline when the description argument is
not an instance of a class that contains information about inline.

⇒ invalid-description-for-merging-inline-data [Condition]

This condition is signaled by merge-inline-data when the description argu-
ment is not an instance of a class that contains inline data.

40 CHAPTER 6. THE REFERENCE IMPLEMENTATION

⇒ merge-inline client description inline [Method]

This is the default method provided on merge-inline. It signals the condition
invalid-description-for-merging-inline-information.

⇒ merge-inline

client
(description inline-mixin)
inline [Method]

This is the main method provided on merge-inline and it is specialized to
inline-mixin.

⇒ merge-inline-data client description inline-data [Method]

This is the default method provided on merge-inline-data. It signals the
condition invalid-description-for-merging-inline-data.

⇒ merge-inline-data

client
(description inline-data-mixin)
inline-data [Method]

This is the main method provided on merge-inline-data and it is specialized
to inline-data-mixin.

⇒ merge-speed client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its speed information has been updated
according to that of value.

⇒ invalid-description-for-merging-speed-information [Condition]

This condition is signaled by merge-speed when the description argument is
not an instance of a class that contains information about speed.

⇒ merge-speed client description speed [Method]

This is the default method provided on merge-speed. It signals the condition
invalid-description-for-merging-speed-information.

⇒ merge-speed

client
(description speed-mixin)
value [Method]

6.4. MERGING DESCRIPTIONS 41

This is the main method provided on merge-speed and it is specialized to
speed-mixin.

⇒ merge-compilation-speed client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its compilation-speed information has been
updated according to that of value.

⇒ invalid-description-for-merging-compilation-speed-information [Condition]

This condition is signaled by merge-compilation-speed when the descrip-

tion argument is not an instance of a class that contains information about
compilation-speed.

⇒ merge-compilation-speed client description compilation-speed [Method]

This is the default method provided on merge-compilation-speed. It signals
the invalid-description-for-merging-compilation-speed-information con-
dition.

⇒ merge-compilation-speed

client
(description compilation-speed-mixin)
value [Method]

This is the main method provided on merge-compilation-speed and it is
specialized to compilation-speed-mixin.

⇒ merge-debug client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its debug information has been updated
according to that of value.

⇒ invalid-description-for-merging-debug-information [Condition]

This condition is signaled by merge-debug when the description argument is
not an instance of a class that contains information about debug.

⇒ merge-debug client description debug [Method]

This is the default method provided on merge-debug. It signals the condition
invalid-description-for-merging-debug-information.

42 CHAPTER 6. THE REFERENCE IMPLEMENTATION

⇒ merge-debug

client
(description debug-mixin)
value [Method]

This is the main method provided on merge-debug and it is specialized to
debug-mixin.

⇒ merge-space client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its space information has been updated
according to that of value.

⇒ invalid-description-for-merging-space-information [Condition]

This condition is signaled by merge-space when the description argument is
not an instance of a class that contains information about space.

⇒ merge-space client description space [Method]

This is the default method provided on merge-space. It signals the condition
invalid-description-for-merging-space-information.

⇒ merge-space

client
(description space-mixin)
value [Method]

This is the main method provided on merge-space and it is specialized to
space-mixin.

⇒ merge-safety client description value [Generic Function]

Given an instance of the class description and an integer between 0 and 3,
return a new instance that is just like description (including the class and the
values of all the slots), except that its safety information has been updated
according to that of value.

⇒ invalid-description-for-merging-safety-information [Condition]

This condition is signaled by merge-safety when the description argument is
not an instance of a class that contains information about safety.

⇒ merge-safety client description safety [Method]

6.5. METHODS ON HIGH-LEVEL AUGMENTATION FUNCTIONS 43

This is the default method provided on merge-safety. It signals the condition
invalid-description-for-merging-safety-information.

⇒ merge-safety

client
(description safety-mixin)
value [Method]

This is the main method provided on merge-safety and it is specialized to
safety-mixin.

6.5 Methods on high-level augmentation functions

6.5.1 Adding and annotating variables

Adding a lexical variable

⇒ add-lexical-variable client (environment environment) name &optional identity [Method]

This is the main method on add-lexical-variable. It instantiates the class
lexical-variable-description and then creates a new environment by call-
ing the function augment-with-variable-description.

Adding a local special variable

⇒ add-local-special-variable client (environment environment) name [Method]

This is the main method on add-local-special-variable. It instantiates the
class local-special-variable-description and then creates a new environ-
ment by calling the function augment-with-variable-description.

Adding a local symbol macro

⇒ add-local-symbol-macro client (environment environment) name expansion [Method]

This is the main method on add-local-symbol-macro. It instantiates the
class local-symbol-macro-description and then creates a new environment

44 CHAPTER 6. THE REFERENCE IMPLEMENTATION

by calling the function augment-with-variable-description.

Annotating a variable with a type

⇒ add-variable-type client (environment environment) name type [Method]

This is the main method on add-variable-type. It calls describe-variable
to obtain an existing variable description. It then calls merge-type to create a
new variable description. Finally, it calls augment-with-variable-description
in order to create and return a new environment.

Annotating a variable with an ignore declaration

⇒ add-variable-ignore client (environment environment) name ignore [Method]

This is the main method on add-variable-ignore. It calls describe-variable
to obtain an existing variable description. It then calls merge-ignore to create
a new variable description. Finally, it calls augment-with-variable-description
in order to create and return a new environment.

Annotating a variable with a dynamic-extent declaration

⇒ add-variable-dynamic-extent client (environment environment) name [Method]

This is the main method on add-variable-dynamic-extent. It calls describe-variable
to obtain an existing variable description. It then calls merge-dynamic-extent
to create a new variable description. Finally, it calls augment-with-variable-description
in order to create and return a new environment.

6.5.2 Adding and annotating functions

Adding a local function

⇒ add-local-function client (environment environment) name &optional identity [Method]

6.5. METHODS ON HIGH-LEVEL AUGMENTATION FUNCTIONS 45

This is the main method on add-local-function. It instantiates the class
local-function-description and then creates a new environment by calling
the function augment-with-function-description.

Adding a local macro

⇒ add-local-macro client (environment environment) name expander [Method]

This is the main method on add-local-macro. It instantiates the class named
local-macro-description and then creates a new environment by calling the
function augment-with-function-description.

Annotating a function with a type

⇒ add-function-type client (environment environment) name type [Method]

This is the main method on add-function-type. It calls describe-function
to obtain an existing function description. It then calls merge-type to create a
new function description. Finally, it calls augment-with-function-description
in order to create and return a new environment.

Annotating a function with an ignore declaration

⇒ add-function-ignore client (environment environment) name ignore [Method]

This is the main method on add-function-ignore. It calls describe-function
to obtain an existing function description. It then calls merge-ignore to create
a new function description. Finally, it calls augment-with-function-description
in order to create and return a new environment.

Annotating a function with a dynamic-extent declaration

⇒ add-function-dynamic-extent client (environment environment) name [Method]

This is the main method on add-function-dynamic-extent. It calls describe-function
to obtain an existing variable description. It then calls merge-dynamic-extent

46 CHAPTER 6. THE REFERENCE IMPLEMENTATION

to create a new variable description. Finally, it calls augment-with-function-description
in order to create and return a new environment.

Annotating a function with an inline declaration

⇒ add-inline client (environment environment) name inline [Method]

This is the main method on add-inline. It calls describe-function to obtain
an existing function description. It then calls merge-inline to create a new
function description. Finally, it calls augment-with-function-description

in order to create and return a new environment.

Annotating a function with inline data

⇒ add-inline-data client (environment environment) name inline-data [Method]

This is the main method on add-inline-data. It calls describe-function to
obtain an existing function description. It then calls merge-inline-data to
create a new function description. Finally, it calls augment-with-function-description
in order to create and return a new environment.

6.5.3 Adding blocks

⇒ add-block client (environment environment) name &optional identity [Method]

This is the main method on add-block. It instantiates the class block-description
and then creates a new environment by calling the function augment-with-block-description.

6.5.4 Adding tags

⇒ add-tag client (environment environment) tag &optional identity [Method]

This is the main method on add-tag. It instantiates the class tag-description
and then creates a new environment by calling the function augment-with-tag-description.

6.5. METHODS ON HIGH-LEVEL AUGMENTATION FUNCTIONS 47

6.5.5 Annotating the optimize qualities

Annotating optimize with a speed value

⇒ add-speed client (environment environment) value [Method]

This is the main method on add-speed. It calls describe-optimize to obtain
the existing optimize description. It then calls merge-speed to create a new
optimize description. Finally, it calls augment-with-optimize-description

in order to create and return a new environment.

Annotating optimize with a compilation-speed value

⇒ add-compilation-speed client (environment environment) value [Method]

This is the main method on add-compilation-speed. It calls describe-optimize
to obtain the existing optimize description. It then calls merge-compilation-speed
to create a new optimize description. Finally, it calls augment-with-optimize-description
in order to create and return a new environment.

Annotating optimize with a debug value

⇒ add-debug client (environment environment) value [Method]

This is the main method on add-debug. It calls describe-optimize to obtain
the existing optimize description. It then calls merge-debug to create a new
optimize description. Finally, it calls augment-with-optimize-description

in order to create and return a new environment.

Annotating optimize with a safety value

⇒ add-safety client (environment environment) value [Method]

This is the main method on add-safety. It calls describe-optimize to obtain
the existing optimize description. It then calls merge-safety to create a new
optimize description. Finally, it calls augment-with-optimize-description

in order to create and return a new environment.

48 CHAPTER 6. THE REFERENCE IMPLEMENTATION

Annotating optimize with a space value

⇒ add-space client (environment environment) value [Method]

This is the main method on add-space. It calls describe-optimize to obtain
the existing optimize description. It then calls merge-space to create a new
optimize description. Finally, it calls augment-with-optimize-description

in order to create and return a new environment.

Bibliography

[Ste90] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.). Digital
Press, Newton, MA, USA, 1990.

49

Index

:compilation-speed Initarg, 14

:compiler-macro Initarg, 12

:debug Initarg, 15

:declarations Initarg, 16

:dynamic-extent Initarg, 11

:expander Initarg, 13

:expansion Initarg, 12

:identity Initarg, 10

:ignore Initarg, 11

:inline-data Initarg, 14

:inline Initarg, 13

:name Initarg, 10

:safety Initarg, 16

:space Initarg, 15

:speed Initarg, 14

:type Initarg, 11

:value Initarg, 12

add-block Generic Function, 27

add-block Method, 46

add-compilation-speedGeneric Func-
tion, 28

add-compilation-speed Method, 47

add-debug Generic Function, 28

add-debug Method, 47

add-function-dynamic-extentGeneric Func-
tion, 26

add-function-dynamic-extentMethod,
45

add-function-ignore Generic Func-
tion, 26

add-function-ignore Method, 45

add-function-typeGeneric Function,
25

add-function-type Method, 45

add-inline-dataGeneric Function, 27

add-inline-data Method, 46

add-inline Generic Function, 26

add-inline Method, 46

add-lexical-variableGeneric Func-
tion, 23

add-lexical-variable Method, 43

add-local-functionGeneric Function,
25

add-local-function Method, 44

add-local-macroGeneric Function, 25

add-local-macro Method, 45

add-local-special-variableGeneric Func-
tion, 24

add-local-special-variableMethod,
43

add-local-symbol-macroGeneric Func-
tion, 24

add-local-symbol-macroMethod, 43

add-safety Generic Function, 28

add-safety Method, 47

add-space Generic Function, 29

50

INDEX 51

add-space Method, 48

add-speed Generic Function, 28

add-speed Method, 47

add-tag Generic Function, 27

add-tag Method, 46

add-variable-dynamic-extentGeneric Func-
tion, 25

add-variable-dynamic-extentMethod,
44

add-variable-ignore Generic Func-
tion, 24

add-variable-ignore Method, 44

add-variable-typeGeneric Function,
24

add-variable-type Method, 44

augment-with-block-descriptionGeneric Func-
tion, 36

augment-with-function-description

Generic Function, 36

augment-with-tag-descriptionGeneric Func-
tion, 36

augment-with-variable-description

Generic Function, 36

authentic-function-description Class,
17

authentic-variable-description Class,
17

block-description Class, 20

compilation-speed-mixin Class, 14

compilation-speed Method, 15

compiler-macro-mixin Class, 12

compiler-macro Method, 12

constant-variable-description Class,
18

debug-mixin Class, 15

debug Method, 15

declarations-description Class, 20

declarations-mixin Class, 16

declarations Method, 16

describe-block Generic Function, 9

describe-declarationsGeneric Func-
tion, 9

describe-functionGeneric Function,
8

describe-optimizeGeneric Function,
9

describe-tag Generic Function, 9

describe-variableGeneric Function,
8

dynamic-extent-mixin Class, 11

dynamic-extent Method, 11

expander-mixin Class, 13

expander Method, 13

expansion-mixin Class, 12

expansion Method, 12

finalize-environment-builderGeneric Func-
tion, 29

function-description Class, 17

generic-function-description Class,
19

global-function-description Class,
19

global-macro-description Class, 19

global-special-variable-description

Class, 18

global-symbol-macro-description Class,
18

identity-mixin Class, 10

identity Method, 10

ignore-mixin Class, 11

ignore Method, 11

inline-data-mixin Class, 13

inline-data Method, 14

inline-mixin Class, 13

52 INDEX

inline Method, 13

invalid-description-for-merging-compilation-speed-information

Condition, 41

invalid-description-for-merging-debug-information

Condition, 41

invalid-description-for-merging-dynamic-extent-information

Condition, 39

invalid-description-for-merging-ignore-information

Condition, 38

invalid-description-for-merging-inline-data

Condition, 39

invalid-description-for-merging-inline-information

Condition, 39

invalid-description-for-merging-safety-information

Condition, 42

invalid-description-for-merging-space-information

Condition, 42

invalid-description-for-merging-speed-information

Condition, 40

invalid-description-for-merging-type-information

Condition, 38

lexical-variable-description Class,
18

local-function-description Class,
19

local-macro-description Class, 19

local-special-variable-description

Class, 18

local-symbol-macro-description Class,
18

macro-description Class, 17

make-environment-builderGeneric Func-
tion, 29

merge-compilation-speedGeneric Func-
tion, 41

merge-compilation-speedMethod, 41

merge-debug Generic Function, 41

merge-debug Method, 41

merge-dynamic-extentGeneric Func-
tion, 38

merge-dynamic-extent Method, 39

merge-ignore Generic Function, 38

merge-ignore Method, 38

merge-inline-dataGeneric Function,
39

merge-inline-data Method, 40

merge-inline Generic Function, 39

merge-inline Method, 40

merge-safety Generic Function, 42

merge-safety Method, 42

merge-space Generic Function, 42

merge-space Method, 42

merge-speed Generic Function, 40

merge-speed Method, 40

merge-type Generic Function, 37

merge-type Method, 38

name-mixin Class, 10

name Method, 10

optimize-description Class, 20

safety-mixin Class, 16

safety Method, 16

space-mixin Class, 15

space Method, 15

special-operator-description Class,
20

special-variable-description Class,
17

speed-mixin Class, 14

speed Method, 14

symbol-macro-description Class, 17

tag-description Class, 20

type-mixin Class, 10

type Method, 11

value-mixin Class, 12

INDEX 53

value Method, 12
variable-description Class, 16
augment-with-block-description

Method, 36
augment-with-function-description

Method, 36
augment-with-optimize-description

Generic Function, 37
augment-with-optimize-description

Method, 37
augment-with-tag-description

Method, 37
augment-with-variable-description

Method, 36
merge-compilation-speed

Method, 41
merge-debug

Method, 42
merge-ignore

Method, 38
merge-inline-data

Method, 40
merge-inline

Method, 40
merge-safety

Method, 43
merge-space

Method, 42
merge-speed

Method, 40
merge-type

Method, 38

	Introduction
	I Protocol specification
	System definition and packages
	Querying the environment
	Query functions
	Variable information
	Function information
	Block information
	Tag information
	Optimize information
	Declarations information

	Mixin classes
	name-mixin
	identity-mixin
	type-mixin
	ignore-mixin
	dynamic-extent-mixin
	value-mixin
	compiler-macro-mixin
	expansion-mixin
	expander-mixin
	inline-mixin
	inline–data-mixin
	speed-mixin
	compilation-speed-mixin
	debug-mixin
	space-mixin
	safety-mixin
	declarations-mixin

	Abstract query classes
	Instantiable classes
	Variable description
	Function description
	Block description
	Tag description
	Optimize description
	Declarations description

	Augmenting the environment
	Creating new description
	High-level augmentation functions
	Adding and annotating variables
	Adding and annotating functions
	Adding blocks
	Adding tags
	Annotating the optimize qualities

	Grouping Environment Augmentations
	Creating an Environment Builder
	Finalizing an Environment Builder

	II Customization
	Customizing with existing lexical environments
	Representing the global environment
	Customizing the query functions
	Customizing the augmentation functions

	The reference implementation
	System and package
	Client and environment
	Low-level augmentation functions
	Merging descriptions
	Methods on high-level augmentation functions
	Adding and annotating variables
	Adding and annotating functions
	Adding blocks
	Adding tags
	Annotating the optimize qualities

	Bibliography
	Index

