
Second Climacs
Version 2 of the Climacs text editor.

Robert Strandh

2013

ii

Contents

1 Introduction 1

I User manual 3

2 Common Lisp mode 5

2.1 Code analyzer . 5

2.1.1 Display of information from code analysis 5

2.1.2 Analyzer phases . 7

2.1.3 Surface syntax analysis 7

2.1.4 Structure syntax analysis 10

2.1.5 Semantic analysis . 13

2.1.6 Other analyses . 21

2.2 Commands . 21

II Extension writer's guide 23

3 General structure 25

4 Writing backends 27

5 Writing syntax analyzers 29

III Internals 31

6 Representation of the editor bu�er 33

iii

iv CONTENTS

7 General control structure 35

8 Common Lisp mode 37

8.1 Syntax . 37

8.1.1 Parsing using the Common Lisp reader 37

8.1.2 Data structure . 38

8.1.3 Moving top-level wads 42

8.1.4 Incremental update . 44

8.2 Computing indentation . 52

8.2.1 Introduction . 52

8.2.2 Overall indentation vs component indentation 53

8.2.3 Special indentation rules 57

8.2.4 Indenting a function call 57

8.2.5 Indenting a macro call 57

8.2.6 Indenting lambda lists 57

IV Interfaces 59

9 McCLIM ESA 61

V Contributing 63

10 General Common Lisp style guide 65

10.1 Purpose of style restrictions . 65

10.2 Width of a line of code . 66

10.3 Blank lines . 67

10.4 car, cdr, first, etc are for cons cells 67

10.5 Di�erent meanings of nil . 68

10.6 Tests in conditional expressions 69

10.7 General structure of recursive functions 70

10.8 Using car and cdr vs. using first and rest 71

10.9 Commenting . 71

10.10Designators for symbol names 72

10.11Docstrings . 72

10.12Naming and use of slots . 72

10.13Using other packages . 73

CONTENTS v

10.14Conditions, restarts, and reporting 73
10.15Internationalization . 74
10.16Threading and thread safety . 74

VI Appendices 75

A Common Lisp mode 77

A.1 Syntax . 77

Bibliography 83

Index 84

vi CONTENTS

Chapter 1

Introduction

Second Climacs is an Emacs-like editor written entirely in Common Lisp. It
is called Second Climacs because it is a complete rewrite of the Climacs text
editor.

Climacs gave us some signi�cant experience with writing a text editor, and we
think we can improve on a number of aspects of it. As a result, there are some
major di�erences between Climacs and Second Climacs:

� We implemented a better bu�er representation, and extracted it from
the editor code into a separate library named Clu�er. The new bu�er
representation will have better performance, especially on large bu�ers,
and it will make it easier to write sophisticated parsers for bu�er contents.

� The incremental parser for Common Lisp syntax of Climacs is very hard
to maintain, and while it is better than that of Emacs, it is still not good
enough. Second Climacs uses Eclector in order to parse bu�er contents.
Eclector is a library that implements the Common Lisp reader, but that
can also be customized in many ways. We take advantage of these ca-
pabilities to read material that is normally skipped, like comments, and
for error recovery. By using a Common Lisp reader, we parse the bu�er
contents in the same way that the Common Lisp compiler would.

� Climacs depends on McCLIM for its graphic user interface. Second Cli-
macs is independent of any particular library for making graphic user

1

2 CHAPTER 1. INTRODUCTION

interfaces, allowing it to be con�gured with di�erent such libraries.

Part I

User manual

3

Chapter 2

Common Lisp mode

Common Lisp mode is still work in progress. The contents of this chapter can
be seen as re�ecting the plans we have for the �nal version. Details may change
as a result of experience, of course.

Common Lisp mode consists of two parts:

� The code analyzer, which is responsible for analyzing the contents of the
bu�er and presenting the result of this analysis to the user.

� A set of commands that take advantage of the result if the analysis.

2.1 Code analyzer

2.1.1 Display of information from code analysis

Information derived by the code analyzer is presented as slight alterations of
how the code elements in the bu�er is displayed to the user. The following
methods are used (roughly in decreasing order of frequency):

� Changing the background color.

5

6 CHAPTER 2. COMMON LISP MODE

� Changing the foreground color.

� Changing the font face.

� Using a di�erent glyph.

In addition, a code element that is marked in this way also has associated
textual information that can be read in the minibu�er when the cursor is
positioned on the text, or as a tooltip when the pointer is positioned above
the text. In the remainder of this chapter, we give the English version of the
textual information. Internationalization may change the language according
to user preference.

Names of speci�c colors that are mentioned in this section are merely examples.
They may or may not be the default colors actually used, and every color can
be customized by the end user.

Furthermore, in some cases a code element that is marked this way has a context
menu associated with it.

In general, errors and warnings are indicated by a speci�c background color.
Typically these colors are in shades of red.

Symbols that have no error or warning information associated with them are
displayed using some dark foreground color so as to give good contrast with
the background.

Except for symbol with lexical bindings and symbols used for loop keywords,
the hue of the color is associated with the home package of the symbol. We use
blue for the Common Lisp package, green for the current package, and magenta

for other packages.

Symbols with lexical bindings use cyan colors, independently of the home pack-
age of the symbol. Symbols used as loop keywords use a dark brown color.

Within a family of similar hues, the darkest color is used for symbols used
as functions and for symbols used as global variables The two categories can
be distinguished because of the position within an expression. Slightly lighter
colors are used for macros and symbol macros.

A context menu may be associated with certain symbols.

2.1. CODE ANALYZER 7

2.1.2 Analyzer phases

The code analyzer works in three phases.

1. Surface syntax analysis.

2. Structure syntax analysis.

3. Semantic analysis.

2.1.3 Surface syntax analysis

This phase consists of repeated applying a custom version of the Common Lisp
read function to the contents of the bu�er in order to obtain a succession of

top-level expressions.

The following types of errors are detected during this phase:

� Invalid tokens. An invalid token is either a token that has an invalid con-
stellation of package markers, or a token with an invalid constellation of
escape characters. In the latter case, it could be a single escape character
at the very end of the bu�er (not even followed by a newline) or an odd
number of multiple escape characters.

� A right parenthesis at the top level of the bu�er.

� An incomplete expression, i.e., an expression that is not terminated, typ-
ically as a result of too few closing parentheses.

� Extraneous whitespace.

As mentioned previously, the result of this analysis is a succession of top-level
expressions, where the last one may incomplete. An incomplete expression is
nevertheless parsed in order to determine the presence of invalid tokens.

8 CHAPTER 2. COMMON LISP MODE

Invalid token syntax

A token which does not have any interpretation as a number is considered a
potential symbol. If so, there are a few cases where token is nevertheless invalid
as the name of a symbol.

The token might have an invalid constellation of package markers:

� Too many package markers.

� Two package markers that are separated by some other character.

� A package marker at the end of the token.

In this case, the background color of the package markers is vivid red, and the
background of the symbol itself is pink.

The associated textual information says �Illegal constellation of package mark-
ers�.

Figure 2.1 illustrates how this type of information is displayed.

(cons abc :def gh: abc :)

illegal constellation of package markers

i

Figure 2.1: Display of potential symbol with illegal package markers.

A token with a single escape character immediately at the end of the bu�er
is displayed with a pink background. The single escape character itself has
a vivid red background. The tooltip says �Single escape followed by end of
bu�er�.

A token with an odd number of multiple escape characters is displayed with a
pink background from the start of the token up to the character immediately
preceding the last multiple escape character. The last multiple escape character

2.1. CODE ANALYZER 9

and the characters following it are displayed with a vivid red background. The
tooltip says �Odd number of multiple escape characters�.

No context menu is suggested for tokens with invalid syntax.

Incomplete expression

An incomplete expression is an expression that starts at some point in the
bu�er, but the end of the bu�er is reached before the expression is complete.

Information about an incomplete expression is shown as an orange background
of the �rst character of the expression. When several nested expressions are
incomplete, the �rst character of each nested expression is marked this way.

Figure 2.2 illustrates how this type of information is displayed.

(defun ff (x)

 (gg x)

(defun gg (y)

 (ff y))

Figure 2.2: Display of incomplete expression.

Extraneous whitespace

Whitespace is considered extraneous in the following cases:

� When it follows a left parenthesis.

� When it precedes a right parenthesis.

� When it follows other whitespace that separate two expressions.

� When it follows the last non-whitespace character of a line.

10 CHAPTER 2. COMMON LISP MODE

It is not considered extraneous in the following cases:

� When it precedes the �rst non-whitespace character on a line.

� When it separates the �rst semicolon on a line from the last preceding
non-whitespace character.

Extraneous whitespace is marked with a pink background. The tooltip associ-
ated with the marked background says �Extraneous whitespace�.

Figure 2.3 illustrates how this type of information is displayed.

extraneous whitespace

(cons x)y

Figure 2.3: Display of extraneous whitespace.

2.1.4 Structure syntax analysis

A top-level expression that passes the �rst phase of the code analyzer is then
analyzed as a form with respect to its structure syntax.

This phase checks the form as follows:

� If the form has the syntax of a symbol with one or two package markers
(other than when the form has the syntax of a keyword symbol), then a
check is made that the package exists.

� If the form has the syntax of a symbol with a single package marker
(other than when the package marker is the �rst character), then a check
is made that the symbol exists in the package indicated, and that it is
exported from that package.

2.1. CODE ANALYZER 11

� If the form has the syntax of a symbol with two package markers, then a
check is also made that the symbol exists in the package indicated, but
with a less severe error display if it does not exist.

� If the form is a compound form where the car is not a symbol, a check
is made that the car of the form is a plausible lambda expression.

� If form is a compound form, and the car of the compound form is a special
operator or a standard macro, then the structure syntax is veri�ed. For
example, it is veri�ed that the bindings of a let have the right form, and
that setf has an even number of arguments.

Non-existing package

A symbol with one or two package markers but where the package indicated in
the pre�x does not exists is marked with a pink background, and the package
name is marked with a vivid red background.

The associated textual information says �Non-existing package�.

Figure 2.4 illustrates how this type of information is displayed.

ns abc :find− thin g stuff)(co

non−existing package

Figure 2.4: Display of potential symbol with a non-existing package.

The context menu has a single option: �Create the package�.

Non-existing symbol

A symbol token with a single package marker that refers to a non-existing
symbol is marked with a vivid red background under the symbol name and a

12 CHAPTER 2. COMMON LISP MODE

pink background under the package name. The associated textual information
says �Non-existing symbol�.

Figure 2.5 illustrates how this type of information is displayed.

tuff)

non−existing symbol

abc :s f th−dni gni(noc s

Figure 2.5: Display of a non-existing symbol with one package marker.

The context menu gives the following options:

� Create and export the symbol in the speci�ed package.

� Import the symbol from a di�erent package into the speci�ed package,
and also export it from the speci�ed package. The user will be prompted
for the package to import from.

A symbol token with a two package markers that refers to a non-existing symbol
is marked with a pink background. The associated textual information says
�Non-existing symbol�.

Figure 2.6 illustrates how this type of information is displayed.

ns abc(co :find− thin g stuff):

non−existing symbol

Figure 2.6: Display of a non-existing symbol with two package markers.

The context menu gives the following options:

2.1. CODE ANALYZER 13

� Create the symbol in the speci�ed package.

� Import the symbol from a di�erent package into the speci�ed package.
The user will be prompted for the package to import from.

Unexported symbol

A symbol token with a single package marker that refers to an existing, but
unexported symbol is marked with a pink background. The associated textual
information says �Unexported symbol.

Figure 2.7 illustrates how this type of information is displayed.

ns abc :find− thin g stuff)(co

unexported symbol

Figure 2.7: Display of an unexported symbol.

The context menu gives the following options:

� Export the symbol from the speci�ed package.

2.1.5 Semantic analysis

Only when a top-level form passes the second phase of the analysis is it subject
to semantic analysis.

Illegal use of Common Lisp symbols

When a symbol from the common-lisp package is used in a context that can
be determined illegal, it is signaled by the use of an orange background.

Figure 2.8 illustrates how this type of information is displayed.

14 CHAPTER 2. COMMON LISP MODE

floor)

(list(x) (f x nil)

() ()

illegal use of symbol

(defclass

(le tf

Figure 2.8: Display of illegal use of Common Lisp symbol.

Names of lexical functions

Names of functions introduced by flet or labels are shown with a dark cyan

foreground color, independently of the home package of the symbol including
when that package happens to be the common-lisp package.

When the pointer is located over such a name, the corresponding symbol in
the introducing binding is highlighted with a light blue background.

One entry in the context menu is to jump to location where the binding was
established.

Names of lexical variables

Names of lexical variables introduced by let, let*, multiple-value-bind,
and by macros that expand into one of these special forms are shown with a
dark cyan foreground color, independently of the home package of the symbol
including when that package happens to be the common-lisp package.

When the pointer is located over such a name, the corresponding symbol in
the introducing binding is highlighted with a light blue background.

One entry in the context menu is to jump to location where the binding was
established.

2.1. CODE ANALYZER 15

Names of local macros

Names of local macros are shown with a slightly lighter cyan foreground color,
independently of the home package of the symbol including when that package
happens to be the common-lisp package.

When the pointer is located over such a name, the corresponding symbol in
the introducing binding is highlighted with a light blue background.

One entry in the context menu is to jump to location where the binding was
established.

Names of local symbol macros

Names of lexical variables are shown with a slightly lighter cyan foreground
color, independently of the home package of the symbol including when that
package happens to be the common-lisp package.

When the pointer is located over such a name, the corresponding symbol in
the introducing binding is highlighted with a light blue background.

One entry in the context menu is to jump to location where the binding was
established.

Names of global functions in the current package

A dark green foreground color is used to display a symbol in the current package
that is the name of a global function, and that is not used as lexical name (of
a variable, a function, a macro, or a symbol macro).

The tooltip shows the documentation entry associated with the named func-
tion.

If the source location where the function was de�ned can be determined, then
one entry in the context menu is to jump to that location.

16 CHAPTER 2. COMMON LISP MODE

Names of global macros in the current package

A slightly lighter green foreground color is used to display a symbol in the
current package that is the name of a global macro, and that is not used as
lexical name (of a variable, a function, a macro, or a symbol macro).

The tooltip shows the documentation entry associated with the named macro.

If the source location where the macro was de�ned can be determined, then
one entry in the context menu is to jump to that location.

Names of global symbol macros in the current package

A slightly lighter green foreground color is used to display a symbol in the
current package that is the name of a global symbol macro, and that is not
used as lexical name (of a variable, a function, a macro, or a symbol macro).

The tooltip shows the documentation entry associated with the named symbol
macro.

If the source location where the symbol macro was de�ned can be determined,
then one entry in the context menu is to jump to that location.

Names of special variables in the current package

A dark green foreground color is used to display a symbol in the current package
if it is in a context where it is the name of a special variable.

The tooltip shows the documentation entry associated with the named variable.

If the symbol names a variable that is globally special, and if the source location
where the variable was de�ned can be determined, then one entry in the context
menu is to jump to that location.

2.1. CODE ANALYZER 17

Names of constant variables in the current package

Names of global functions in the common-lisp package

A dark blue foreground color is used to display a symbol in the common-lisp

package that is the name of a global function, and that is not used as lexical
name (of a variable or a symbol macro).

The tooltip shows the documentation entry associated with the named func-
tion.

One entry of the context menu is to show the entry in the HyperSpec associated
with the named function.

Names of global macros in the common-lisp package

A slightly lighter blue foreground color is used to display a symbol in the
common-lisp package that is the name of a global macro, and that is not used
as lexical name (of a variable or a symbol macro).

The tooltip shows the documentation entry associated with the named macro.

One entry of the context menu is to show the entry in the HyperSpec associated
with the named macro.

Names of special variables in the common-lisp package

A dark blue foreground color is used to display a symbol in the common-lisp

package that is the name of a special variable.

The tooltip shows the documentation entry associated with the named variable.

One entry of the context menu is to show the entry in the HyperSpec associated
with the named variable.

18 CHAPTER 2. COMMON LISP MODE

Names of constant variables in the common-lisp package

The tooltip shows the documentation entry associated with the named constant
variable.

One entry of the context menu is to show the entry in the HyperSpec associated
with the named macro.

Names of special operators

The tooltip shows the documentation entry associated with the named special
operator.

One entry of the context menu is to show the entry in the HyperSpec associated
with the named special operator.

Names of global functions in other packages

A dark magenta foreground color is used to display a symbol in a package
other than the current one or the common-lisp package that is the name of a
global function, and that is not used as lexical name (of a variable, a function,
a macro, or a symbol macro).

The tooltip shows the documentation entry associated with the named func-
tion.

If the source location where the function was de�ned can be determined, then
one entry in the context menu is to jump to that location.

Names of global macros in other packages

A slightly lighter magenta foreground color is used to display a symbol in a
package other than the current one or the common-lisp package that is the
name of a global macro, and that is not used as lexical name (of a variable, a
function, a macro, or a symbol macro).

The tooltip shows the documentation entry associated with the named macro.

2.1. CODE ANALYZER 19

If the source location where the macro was de�ned can be determined, then
one entry in the context menu is to jump to that location.

Names of global symbol macros in other packages

A slightly lighter magenta foreground color is used to display a symbol in a
package other than the current one or the common-lisp package that is the
name of a global symbol macro, and that is not used as lexical name (of a
variable, a function, a macro, or a symbol macro).

The tooltip shows the documentation entry associated with the named symbol
macro.

If the source location where the macro was de�ned can be determined, then
one entry in the context menu is to jump to that location.

Names of special variables in other packages

A dark magenta foreground color is used to display a symbol in a package other
than the current one or the common-lisp package if it is in a context where it
is the name of a special variable.

The tooltip shows the documentation entry associated with the named variable.

If the symbol names a variable that is globally special, and if the source location
where the variable was de�ned can be determined, then one entry in the context
menu is to jump to that location.

Names of constant variables in other packages

Argument mismatch

Argument mismatch is a situation that may occur for the following types of
forms:

� Function calls.

20 CHAPTER 2. COMMON LISP MODE

� Macro calls.

� Special forms.

Argument mismatch corresponds to one of the following situations:

� The number of arguments is less than the minimum number required by
the function, the macro, or the special operator.

� The number of arguments is greater than the maximum number allowed
by the function, the macro, or the special operator.

� The function, the macro or the special operator admit &key arguments,
and there is an odd number of arguments in that part of the argument
list.

� The function, the macro or the special operator requires the number of
arguments to be even, but an odd number of arguments are given (e.g.,
for setq and setf).

� The function, the macro or the special operator requires the number of
arguments to be odd, but an even number of arguments are given.

In the case where the number of arguments is greater than the maximum
number allowed, each extraneous arguments is highlighted with a vivid red

background. The tooltip associated with each arguments says �Extraneous
argument.�

In all other cases, the closing parenthesis is preceded by a red rectangle. Notice
that this red rectangle does not constitute an item in the bu�er, and as a
consequence it is impossible to position the cursor between the red rectangle
and the closing parenthesis. Rather, the red rectangle is part of the way the
closing parenthesis is displayed. In the case where too few arguments were
given, the tooltip says �Too few arguments�, and in the other cases it says
�Wrong argument parity�.

2.2. COMMANDS 21

Indentation

A line that is indented incorrectly is displayed with a pink arrow in the left
margin. If the indentation of the line is insu�cient, the arrow points to the
right, and if the indentation of the line is excessive, then the arrow points to
the left.

Figure 2.9 illustrates how this type of information is displayed.

(le t ((

(y

x a)

))b

)y

x

xf(

(g y))

Figure 2.9: Display of extraneous whitespace.

2.1.6 Other analyses

Comments

Comments can be checked for spelling errors.

2.2 Commands

� Forward expression

� Backward expression

� Beginning of expression

� End of expression

22 CHAPTER 2. COMMON LISP MODE

� Beginning of top-level expression

� End of top-level expression

� Exchange expressions

� Down expression

� Indent line

� Indent region

� Indent top-level expression

� Indent buffer

� Complete symbol

Part II

Extension writer's guide

23

Chapter 3

General structure

At any point in time Second Climacs contains a certain number of bu�ers. A
bu�er can only be modi�ed as a result of the execution of a command. Such
a command can be executed as a result of a key sequence, of typing the name

of the command into a command-line command processor, or of clicking on a
button or a menu entry that was designed to execute a command. Generally
speaking, most events, such as scrolling or resizing a window, do not result in
a command being executed.

Before a bu�er can be viewed, its syntax must be analyzed by a syntax analyzer.
Normally, there is a single syntax analyzer for a bu�er, and it is chosen based
on the contents of the bu�er, which is typically determined by the extension of
the �le from which the bu�er was created. Thus, for instance, a bu�er contain-
ing Common Lisp code is typically analyzed using the analyzer for Common
Lisp code. However, it is possible for a single bu�er to have several di�erent
simultaneous syntax analyzers. The syntax analyzers of a bu�er generally an-
alyze the syntax incrementally whenever possible. This incremental analysis
is triggered by the command loop after the execution of a command. Every
syntax analyzer is triggered after each iteration of the command loop, though
typically most bu�ers have not been modi�ed so the incremental analysis then
terminates immediately. Though in most cases a syntax analyzer refers to a
single bu�er, it is possible for a syntax analyzer to refer to several bu�er, or
even to other syntax analyzers.

25

26 CHAPTER 3. GENERAL STRUCTURE

All user interaction, both input and output, is mediated through a view. The
view typically contains a single syntax analyzer which in turn contains a single
bu�er. More complicated views can contain several syntax analyzers. Each
view typically contains a cursor into the bu�er of its syntax analyzer. Each
view also contains a command processor to which key strokes are directed
when the view is the current view. These key strokes may modify the bu�er(s)
associated with the view, or they may in�uence the view itself in some way
(moving the cursor for instance).

A view may or may not be visible. Views that are not visible will still have they
associated syntax analyzers updated after each iteration around the command
loop, but the processing stops there. Views that are visible also have a show

associated with them. They show is charged with transforming the result of the
syntax analysis to elements of the graphic user interface. In a way analogous to
that of a syntax analyzer, a show is updated incrementally from the result of the
syntax analyses of the associated view. However, whereas the syntax analyzer
is updated at each iteration of the command loop, the show is updated at each
iteration of the event loop. The reason for this more frequent update is that the
show might have to change as a result of events such as resizing a window or
scrolling. Because the data structures of a show can take up considerable space,
they are discarded when a view is no longer visible, and they are recomputed
when the view again becomes visible.

Chapter 4

Writing backends

27

28 CHAPTER 4. WRITING BACKENDS

Chapter 5

Writing syntax analyzers

29

30 CHAPTER 5. WRITING SYNTAX ANALYZERS

Part III

Internals

31

Chapter 6

Representation of the editor

bu�er

Second Climacs uses the Clu�er library1 to represent its bu�ers.

We brie�y describe the essential aspects of that library below. For detailed
information on how it works, see the dedicated documentation.

Clu�er proposes two distinct protocols, namely the edit protocol and the update
protocol.

The edit protocol provides operations for editing the bu�er contents. It has
been designed to be both simple and very e�cient. As such, it does not pro-
vide operations on larger chunks of contents such as regions. It only provides
operations on single items, and operations to split and join lines. These editing
operations do not trigger any view updates which is why they can be invoked
a large number of times for each user interaction without loss of performance.
This features is taken advantage of in operations on regions and in keyboard
macros.

The update protocol is designed to be run at the frequency of the event loop.
It is based on the concept of time stamps. Any number of edit operations can
be performed between two invocations of the update protocol, and the update

1See https://github.com/robert-strandh/Clu�er

33

34 CHAPTER 6. REPRESENTATION OF THE EDITOR BUFFER

protocol can be invoked at di�erent times for di�erent views, including very
rarely for views that are not currently on display. Given that the amount of
data displayed in a view is relatively modest, no attempt is made to minimize
the modi�cations to the view. The smallest unit of an update is a line of items.

Chapter 7

General control structure

The general control structure was designed with the following goals:

� Most editing operations should be very fast, even when they involve fairly
large chunks of bu�er contents. Here, fast means that the response time
for interactive editing should be short.

� From a software-engineering point of view, the bu�er editing operations
should not be aware of the presence of any views.

Notice that it was not a goal that editing operations use as little computational
power as possible.

Input events can be divided into two categories:

� Input events that result in some modi�cation to some bu�er contents.
Inserting and deleting items are in this category. Modi�cations can be
the result of indirect events such as executing a keyboard macro that
inserts or deletes items in one or more bu�ers.

� Input events that have no e�ect on any bu�er contents. Moving a cursor,
changing the size of a window, or scrolling a view are typical events in
this category. These events in�uence only the view into a bu�er.

35

36 CHAPTER 7. GENERAL CONTROL STRUCTURE

When an event in the �rst category occurs, the following chain of events is
triggered:

1. The event itself triggers the execution of some command that causes one
or more items to be inserted and/or deleted from one or more bu�ers.
Whether this happens as a direct result or as an indirect result of the
event makes no di�erence. The bu�ers involved are modi�ed, but no
other action is taken at this time. Lines that are modi�ed or inserted
are marked with the current time stamp and the current time stamp is
incremented, possibly more than once.

2. At the end of the execution of the command, the syntax update is ex-
ecuted for all bu�ers, allowing the contents to be incrementally parsed
according to the syntax associated with the bu�er.1 Finally, visible views
are repainted using whatever combination they want of the bu�er con-
tents and the result of the syntax update. The syntax update uses the
time stamps of lines in the bu�er and of the previous syntax update to
compute an up-to-date representation of the bu�er. This computation is
done incrementally as much as possible.

3. Each view on display recomputes the data presented to the user and
redraws the associated window. Again, time stamps are used to make
this computation as incremental as possible.

1FIXME: There seem to be cases where the syntax of one bu�er depends not only on its
own associated bu�er, but also on the contents of other bu�ers. It is not a big problem if
the dependency is only on the contents of other bu�ers, but if the dependency is also on
the result of the syntax analysis of other bu�ers, then one syntax update might invalidate
another. In that case, it might be necessary to loop until all analyses are complete. This can
become very complicated because there can now be circular dependencies so that the entire
editor gets caught in an in�nite loop.

Chapter 8

Common Lisp mode

8.1 Syntax

8.1.1 Parsing using the Common Lisp reader

We use a special version of the Common Lisp reader to parse the contents of a
bu�er. We use a special version of the reader for the following reasons:

� We need a di�erent action from that of the standard reader when it
comes to interpreting tokens. In particular, we do not necessarily want
the incremental parser to intern symbols automatically, and we do not
want the reader to fail when a symbol with an explicit package pre�x
does not exist or when the package corresponding to the package pre�x
does not exists.

� We need for the reader to return not only a resulting expression, but an
object that describes the start and end positions in the bu�er where the
expression was read.

� The reader needs to return source elements that are not returned by an
ordinary reader, such as comments and expressions that are skipped by
certain other reader macros.

37

38 CHAPTER 8. COMMON LISP MODE

� The reader can not fail when an incorrect character is encountered, nor
when end of �le is encountered in the middle of a call.

We call the data structure referred to in the last item a wad. It contains the
following slots:

� The start and the end location of the wad in the bu�er. For details on
how this wad is represented, Section 8.1.2.

� The expression that was read, with some possible modi�cations. Tokens
are not represented as themselves for reasons mentioned above.

� A list of children. These are wads that were returned by recursive calls
to the reader. The children are represented in the order they were en-
countered in the bu�er. This order may be di�erent from the order in
which the corresponding expressions appear in the expression resulting
from the call to the reader.

8.1.2 Data structure

A location in the bu�er is considered a top-level location if and only if, when the
bu�er is parsed by a number of consecutive calls to read, when this location is
reached, the reader is in its initial state with no recursive pending invocations.

The Common Lisp syntax maintains a sequence1 of top-level wads. A wad is
considered top-level if it is the result of an immediate call to read, as opposed
to of a recursive call.

This sequence is organized as two ordinary Common Lisp lists, called the pre�x
and the su�x. Given a top-level location L in the bu�er, the pre�x contains
a list of the top-level wad that precede L and the su�x contains a list of the
top-level wads that follow L. The top-level wads in the pre�x occur in reverse
order compared to order in which they appear in the bu�er. The top-level
wads in the su�x occur in the same order as they appear in the bu�er. the
location L is typically immediately before or immediately after the top-level
expression in which the cursor of the current view is located, but that is not

1It is not a Common Lisp sequence, but just a suite represented in a di�erent way.

8.1. SYNTAX 39

a requirement. Figure 8.1 illustrates the pre�x and the su�x of a bu�er with
�ve top-level expressions.

(top−level expression 1)

(top−level expression 5)

(top−level expression 4)

(top−level expression 3)

(top−level expression 2)

prefix

suffix

top−level

wads

Figure 8.1: Pre�x and su�x containing top-level wads.

Either the pre�x or the su�x or both may be the empty list. The location L
may be moved. It su�ces2 to pop an element o� of one of the lists and push
it onto the other.

The representation of a wad is shown in Figure 8.2.

Let the initial character of some wad be the �rst non-whitespace character
encountered during the call to the reader that produced this wad. Similarly,
let the �nal character of some wad be the last character encountered during the
call to the reader that produced this wad, excluding any look-ahead character
that could be un-read before the wad was returned.

2Some slots also need to be updated as will be discussed later.

40 CHAPTER 8. COMMON LISP MODE

start−column

start−line

end−line

end−column

expression

children

...

Figure 8.2: Representation of wad.

The slot named start-line is computed as follows:

� If the wad is one of the top-level wads in the pre�x or the �rst top-level
wad in the su�x, then the value of this slot is the absolute line number of
the initial character of this wad. The �rst line of the bu�er is numbered
0.

� If the wad is a top-level wad in the su�x other than the �rst one, then
the value of this slot is the number of lines between the value of the slot
start-line of the preceding wad and the initial character of this wad.
A value of 0 indicates the same line as the start-line of the preceding
wad.

� If this wad is the �rst in a list of children of some parent wad, then the
value of this slot is the number of lines between the value of the slot
start-line of the parent wad and the initial character of this wad.

� If this wad is the child other than the �rst in a list of children of some
parent wad, then the value of this slot is the number of lines between the
value of the slot start-line of the preceding sibling wad and the initial
character of this wad.

The value of the slot start-column is the absolute column number of the initial
character of this wad. A value of 0 means the leftmost column.

8.1. SYNTAX 41

The value of the slot end-line of some wad is the number of lines between the
value of the slot start-line of the same wad and the �nal character of the
wad. If the wad starts and ends on the same line, then the value of this slot is
0.

The value of the slot end-column is the absolute column number of the �nal
character of the wad.

To illustrate the data structure, we use the following example:

...

34 (f 10)

35

36 (let ((x 1)

37 (y 2))

38 (g (h x)

39 (i y)

40 (j x y)))

41

42 (f 20)

...

Each line is preceded by the absolute line number. If the wad starting at line
36 is a member of the pre�x or if it is the �rst element of the su�x, it would
be represented like this:

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

00 01 ((x 1) (y 2))

00 00 (x 1)

01 00 (y 2)

02 02 (g (h x) (i y) (j x y))

00 00 (h x)

01 00 (i y)

02 00 (j x y)

Since column numbers are uninteresting for our illustration, we show only line
numbers. Furthermore, we present a list as a table for a more compact presen-
tation.

42 CHAPTER 8. COMMON LISP MODE

8.1.3 Moving top-level wads

Occasionally, some top-level wads need to be moved from the pre�x to the
su�x or from the su�x to the pre�x. There could be several reasons for such
moves:

� The place between the pre�x and the su�x must always be near the part
of the bu�er currently on display when the contents are presented to the
user. If the part on display changes as a result of scrolling or as a result
of the user moving the current cursor, then the pre�x and su�x must be
adjusted to re�ect the new position prior to the presentation.

� After items have been inserted into or deleted from the bu�er, the incre-
mental parser may have to adjust the pre�x and the su�x so that the
altered top-level wads are near the beginning of the su�x.

These adjustments are always accomplished by repeatedly moving a single top-
level wad.

To move a single top-level wad P from the pre�x to the su�x, the following
actions are executed:

1. Modify the slot start-line of the �rst wad of the su�x so that, instead of
containing the absolute line number, it contains the line number relative
to the value of the slot start-line of P .

2. Pop P from the pre�x and push it onto the su�x. Rather than using the
straightforward technique, the cons cell referring to P can be reused so
as to avoid unnecessary consing.

To move a single top-level wad P from the su�x to the pre�x, the following
actions are executed:

1. If P has a successor S in the su�x, then the slot start-line of S is
adjusted so that it contains the absolute line number as opposed to the
line number relative to the slot start-line of P .

8.1. SYNTAX 43

2. Pop P from the su�x and push it onto the pre�x. Rather than using the
straightforward technique, the cons cell referring to P can be reused so
as to avoid unnecessary consing.

We illustrate this process by showing four possible top-level locations in the
example bu�er. If all three top-level wads are located in the su�x, we have
the following situation:

prefix

...

suffix

34 00 (f 10)

02 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

06 00 (f 20)

...

In the example, we do not show the children of the top-level wad.

If the pre�x contains the �rst top-level expression and the su�x the other two,
we have the following situation:

prefix

...

34 00 (f 10)

suffix

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

06 00 (f 20)

...

If the pre�x contains the �rst two top-level expressions and the su�x the re-
maining one, we have the following situation:

prefix

...

34 00 (f 10)

44 CHAPTER 8. COMMON LISP MODE

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

suffix

42 00 (f 20)

...

Finally, if the pre�x contains all three top-level expressions, we have the fol-
lowing situation:

prefix

...

34 00 (f 10)

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

42 00 (f 20)

suffix

...

8.1.4 Incremental update

Modi�cations to the bu�er are reported at the granularity of entire lines. The
following operations are possible:

� A line may be modi�ed.

� A line may be inserted.

� A line may be deleted.

Several di�erent lines may be modi�ed between two incremental updates, and
in di�erent ways. The �rst step in an incremental update step is to invalidate
wads that are no longer known to be correct after these modi�cations. This
step modi�es the data structure described in Section 8.1.2 in the following way:

� After the invalidation step, the pre�x contains the wad preceding the �rst
modi�ed line, so that these wads are still valid.

8.1. SYNTAX 45

� The su�x contains those wads following the last modi�ed line. These
wads are still valid, but they may no longer be top-level wads, because
the nesting may have changed as a result of the modi�cations preceding
the su�x.

� An additional list of residual wads is created. This list contains wads that
have not been invalidated by the modi�cations, i.e. that appear only in
lines that have not been modi�ed.

The order of the wads in the list of residual wads is the same as the order of the
wads in the bu�er. The slot start-line of each wad in the list is the absolute
line number of the initial character of that wad.

Suppose, for example, that the bu�er contents in our running example was
modi�ed so that line 37 was altered in some way, and a line was inserted
between the lines 39 and 40. As a result of this update, we need to represent
the following wads:

...

34 (f 10)

35

36 (x 1)

37

38 (h x)

39 (i y)

40

41 (j x y)

42

43 (f 20)

...

In other words, we need to obtain the following representation:

prefix

...

34 00 (f 10)

residual

46 CHAPTER 8. COMMON LISP MODE

36 00 (x 1)

38 00 (h x)

39 00 (i y)

41 00 (j x y)

suffix

43 00 (f 20)

...

Processing modi�cations

While the list of residual wads is being constructed, its elements are in the
reverse order. Only when all bu�er updates have been processed is the list of
residual wads reversed to obtain the �nal representation.

All line modi�cations are reported in increasing order of line number. Before
the �rst modi�cation is processed, the pre�x and the su�x are positioned as
indicated above, and the list of residual wads is initialized to the empty list.

The following actions are taken, depending on the position of the modi�ed line
with respect to the su�x, and on the nature of the modi�cation:

� If a line has been modi�ed, and either the su�x is empty or the modi�ed
line precedes the �rst wad of the su�x, then no action is taken.

� If a line has been deleted, and the su�x is empty, then no action is taken.

� If a line has been deleted, and it precedes the �rst wad of the su�x, then
the slot start-line of the �rst wad of the su�x is decremented.

� If a line has been inserted, and the su�x is empty, then no action is
taken.

� If a line has been inserted, and it precedes the �rst wad of the su�x, then
the slot start-line of the �rst wad of the su�x is incremented.

� If a line has been modi�ed and the entire �rst wad of the su�x is entirely
contained in this line, then remove the �rst wad from the su�x and start
the entire process again with the same modi�ed line. To remove the
�rst wad from the su�x, �rst adjust the slot start-line of the second

8.1. SYNTAX 47

element of the su�x (if any) to re�ect the absolute start line. Then pop
the �rst element o� the su�x.

� If a line has been modi�ed, deleted, or inserted, in a way that may a�ect
the �rst wad of the su�x, then this wad is �rst removed from the su�x
and then processed as indicated below. Finally, start the entire process
again with the same modi�ed line. To remove the �rst wad from the
su�x, �rst adjust the slot start-line of the second element of the su�x
(if any) to re�ect the absolute start line. Then pop the �rst element o�
the su�x.

Modi�cations potentially apply to elements of the su�x. When such an element
needs to be taken apart, we try to salvage as many as possible of its descendants.
We do this by moving the element to a worklist organized as a stack represented
as an ordinary Common Lisp list. The top of the stack is taken apart by
popping it from the stack and pushing its children. This process goes on
until either the top element has no children, or it is no longer a�ected by a
modi�cation to the bu�er, in which case it is moved to the list of residual wads.

Let us see how we process the modi�cations in our running example.

Line 37 has been altered, so our �rst task is to adjust the pre�x and the su�x
so that the pre�x contains the last wad that is una�ected by the modi�cations.
This adjustment results in the following situation:

prefix

...

34 00 (f 10)

residue

worklist

suffix

36 04 (let ((x 1) (y 2)) (g (h x) (i y) (j x y)))

06 00 (f 20)

...

The �rst wad of the su�x is a�ected by the fact that line 37 has been modi�ed.
We must move the children of that wad to the worklist. In doing so, we make

48 CHAPTER 8. COMMON LISP MODE

the start-line of the children re�ect the absolute line number, and we also
make the start-line of the next wad of the su�x also re�ect the absolute line
number. We obtain the following situation:

prefix

...

34 00 (f 10)

residue

worklist

36 01 ((x 1) (y 2))

38 02 (g (h x) (i y) (j x y))

suffix

42 00 (f 20)

...

The �rst element of the worklist is a�ected by the modi�cation of line 37.
We therefore remove it from the worklist, and add its children to the top of
the worklist. In doing so, we make the start-line of those children re�ect
absolute line numbers. We obtain the following situation:

prefix

...

34 00 (f 10)

residue

worklist

36 00 (x 1)

37 00 (y 2)

38 02 (g (h x) (i y) (j x y))

suffix

42 00 (f 20)

...

The �rst element of the worklist is una�ected by the modi�cation, because it
precedes the modi�ed line entirely. We therefore move it to the residue list.
We now have the following situation:

8.1. SYNTAX 49

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

worklist

37 00 (y 2)

38 02 (g (h x) (i y) (j x y))

suffix

42 00 (f 20)

...

The �rst wad of the top of the worklist is a�ected by the modi�cation. It has
no children, so we pop it o� the worklist.

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

worklist

38 02 (g (h x) (i y) (j x y))

suffix

42 00 (f 20)

...

The modi�cation of line 37 is now entirely processed. We know this because
the �rst wad on the worklist occurs beyond the modi�ed line in the bu�er. We
therefore start processing the line inserted between the existing lines 39 and
40. The �rst item on the worklist is a�ected by this insertion. We therefore
remove it from the worklist and push its children instead. In doing so, we make
the start-line slot those children re�ect the absolute line number. We obtain
the following result:

prefix

...

50 CHAPTER 8. COMMON LISP MODE

34 00 (f 10)

residue

36 00 (x 1)

worklist

38 00 (h x)

39 00 (i y)

40 00 (j x y)

suffix

42 00 (f 20)

...

The �rst element of the worklist is una�ected by the insertion because it pre-
cedes the inserted line entirely. We therefore move it to the residue list. We
now have the following situation:

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

38 00 (h x)

worklist

39 00 (i y)

40 00 (j x y)

suffix

42 00 (f 20)

...

Once again, the �rst element of the worklist is una�ected by the insertion
because it precedes the inserted line entirely. We therefore move it to the
residue list. We now have the following situation:

prefix

...

34 00 (f 10)

residue

8.1. SYNTAX 51

36 00 (x 1)

38 00 (h x)

39 00 (i y)

worklist

40 00 (j x y)

suffix

42 00 (f 20)

...

The �rst element of the worklist is a�ected by the insertion, in that it must
have its line number incremented. In fact, every element of the worklist and
also the �rst element of the su�x must have their line numbers incremented.
Furthermore, this update �nishes the processing of the inserted line. We now
have the following situation:

prefix

...

34 00 (f 10)

residue

36 00 (x 1)

38 00 (h x)

39 00 (i y)

worklist

41 00 (j x y)

suffix

43 00 (f 20)

...

With no more bu�er modi�cations to process, we terminate the procedure by
moving remaining wads from the worklist to the residue list. The �nal situation
is shown here:

prefix

...

34 00 (f 10)

residue

52 CHAPTER 8. COMMON LISP MODE

36 00 (x 1)

38 00 (h x)

39 00 (i y)

41 00 (j x y)

worklist

suffix

43 00 (f 20)

...

Recreating the cache

Once the cache has been processed so that only wads that are known to be
valid remain, the new bu�er contents must be fully parsed so that its complete
structure is re�ected in the cache.

Conceptually, we obtain a complete cache by applying read repeatedly from
the beginning of the bu�er, until all top-level wad have been found. But doing
it this way essentially for every keystroke would be too slow. In this section
we explain how the partially invalidated cache is used to make this process
su�ciently fast.

8.2 Computing indentation

8.2.1 Introduction

De�nition and unit of indentation

Indentation refers to the whitespace preceding the �rst non-whitespace item
of a line of text in a bu�er. For reasons of backward compatibility, we handle
indentation in terms of an integral number of space characters in a �xed-width
font, so that text read-from and written-to an external �le will be compati-
ble with existing development tools. At the end of this chapter, we describe
how a bu�er containing indented Common Lisp code can be displayed using
a proportional font, even though the bu�er contents has been computed for a
�xed-with font.

8.2. COMPUTING INDENTATION 53

The basic unit of indentation is considered to be two space characters. Oc-
casionally, we suggest the use of a single space characters for certain bu�er
elements.

Indentation block

Indentation is complicated by the presence of comments. To simplify the com-
putation, we de�ne an indentation block as either:

1. A maximal sequence of comment wads, each starting with at least two
semicolons, followed by a single expression wad, followed by a maximal
sequence of comment wads, each starting with a single semicolon. In this
case we say that we have a complete indentation block.

2. The sequence of all child comment wads at the end of an expression
wad, if there is a comment wad starting with at least two semicolons not
followed by an expression wad, as a child of an expression wad. In this
case, we say that we have a degenerate indentation block.

8.2.2 Overall indentation vs component indentation

We consider two di�erent indentation types for a wad in a bu�er:

1. The overall indentation of the wad, which is the indentation of the �rst
character of the wad relative to the overall indentation of its parent wad.

2. The component indentation of a compound wad, which is the overall
indentation of the child wads, of the wad.

Component indentation of a compound wad is determined by the kind of ex-
pression that the compound wad represents. A compound wad that represents
a special form has rule for computing component indentation that depends on
the special operator for that form, and similarly, for a component wad that
represents a standard macro form.

54 CHAPTER 8. COMMON LISP MODE

Current indentation vs desired indentation

The current indentation of a wad is the current relative horizontal position of
its overall indentation compared to the current relative horizontal position of
its parent. The current indentation of a top-level wad is its horizontal position
relative to 0.

The desired indentation of a wad is the desired relative horizontal position of its
overall indentation compared to the current relative horizontal position of its
parent. The desired indentation of a wad depends on the nature of its parent.
Notice that the desired indentation is independent of the desired indentation
of its parent, and depends only on the current indentation of its parent.

Basic rules for desired indentation

The expression wad and the preceding comment wads of a complete indentation
block have the same desired indentation.

If the �rst wad of a complete indentation block (which can be a comment wad
with at least two semicolons, or an expression wad) is preceded on the same
line by some other wad, then the desired indentation of the preceding comment
wads and the expression wad is the current indentation of the �rst wad of the
block.

Example:

(let ;; The user wanted the bindings to start

;; two spaces after LET, for some reason.

((x 10))

...)

If the �rst wad of a complete indentation block is not preceded by any other
wad on the same line, then the desired indentation of the preceding comment
wads and the expression wad is determined by the indentation rules of the
parent wad and the nature of the expression wad in the block.

Example:

8.2. COMPUTING INDENTATION 55

(let

;; The rule for LET is probably 4 spaces for the bindings.

((x 10))

;; And maybe 3 for declarations?

(declare (type integer x))

;; Certainly 2 for the body.

(+ x 20))

If the �rst comment wad following the expression wad in a complete indenta-
tion block is preceded by the expression wad on the same line, then the desired
indentation for the comment wad is its current indentation. Subsequent com-
ment wads have the same desired indentation as the �rst such comment wad.

Example:

(let ((x 10))

(incf x 20) ; The user wanted some distance here.

; But there might be more to say.

(+ x 30))

If the �rst comment wad following the expression wad in a complete indentation
block is not preceded by the expression wad on the same line, then the desired
indentation for the comment wad is two spaces past the end of the expression
block.

Example:

(let ((x 10))

(incf x 20)

; For some reason, the user put this

; comment on a separate line.

(+ x 30))

Before we state the rules for degenerate indentation blocks, we need to de�ne
what an inter-block indentation rule is.

56 CHAPTER 8. COMMON LISP MODE

Inter-block indentation rules

As mentioned previously, a compound wad has a bunch of rules associated with
it, and those rules determine the desired indentation of child wads. But a com-
ponent wad also has another bunch of rules that determine desired indentation
of potential wads to be inserted between two existing child wads, or after the
last child wad. Such a rule depends on the number and nature of preceding
and following expression types.

An inter-block rule is used in these situations:

1. When the cursor is positioned on a blank line between two complete
indentation blocks inside a compound wad.

2. When the cursor is positioned after the last complete indentation block
of a compound wad, is preceded by whitespace on the same line, and
there is no degenerate indentation block in this compound wad.

3. For the wads of a degenerate indentation block.

Examples:

;;; In this example, we think the rule for LET should

;;; indicate that a body form might be about to be typed

(let ((x 10))

|

(+ x 20))

;;; In this example, assuming the previous desired

;;; indentation of a declaration, perhaps another

;;; declaration is coming up.

(let ((x 10))

|

(declare (type integer x))

(+ x 20))

;;; Here, clearly another body form is coming:

8.2. COMPUTING INDENTATION 57

(let ((x 10))

(declare (type integer x))

(+ x 20)

|)

Handling incomplete bu�er contents

So far, we have assumed that the bu�er contains complete top-level wads, but
the last top-level wad in the bu�er is often incomplete, in that the call to read

encountered and end-of-�le situation.

For the purpose of indenting existing wads in the bu�er, we simply consider
the last top-level wad as being complete, but without any explicit characters
to mark the end.

For the purpose of indenting potential wads, if the cursor is at the end of the
bu�er, then it is positioned at the end of the innermost incomplete wad. If not,
the cursor is followed by some wad, and then the inter-block rules apply.

8.2.3 Special indentation rules

8.2.4 Indenting a function call

8.2.5 Indenting a macro call

8.2.6 Indenting lambda lists

58 CHAPTER 8. COMMON LISP MODE

Part IV

Interfaces

59

Chapter 9

McCLIM ESA

61

62 CHAPTER 9. MCCLIM ESA

Part V

Contributing

63

Chapter 10

General Common Lisp style

guide

10.1 Purpose of style restrictions

The purpose of imposing a particular style is based on a few simple facts that
hold true for both natural languages and programming languages:

� The set of all idiomatic phrases is a tiny subset of the set of all grammat-
ical phrases.

� The main purpose of these phrases is to serve as communication between
people.

To illustrate the �rst fact, consider a natural language such as English. In
English, we say �tooth brush�, but �dental �oss�. The words �dental brush� and
�tooth �oss� would be perfectly grammatical, but they are not used. A person
trying to communicate with other people must use the words that have been
widely agreed upon, even though some other words are perfectly legitimate.
It might seem that such idiosyncrasies would be limited to languages with
multiple heritage such as English, but that is not the case. In French, we say
�brosse à dents�, �pâte dentifrice�, and ��l dentaire�. There are nine reasonable
combinations, but only one is used.

65

66 CHAPTER 10. GENERAL COMMON LISP STYLE GUIDE

The same thing is true for programming languages. The community has col-
lectively decided on a particular subset of all the grammatical phrases, and a
programmer who wishes to communicate with other programmers should stick
to that subset.

It should also be emphasized that the choice of idioms is di�erent in di�erent
languages. An example from natural languages would be that in English we
say �I was my hands�, in French �I wash myself the hands�, and in Swedish we
say �I wash the hands [on myself]�. Just as it would be pointless trying to use
an idiom form one language in a translated version in a di�erent language, it is
as pointless to translate idioms from one programming language to a di�erent
programming language.

Finally, the choice of what phrases are idioms and what phrases are not is
almost totally arbitrary, and based on coincidences of history. Therefore it
is rarely productive to ask oneself why a particular phrase is an idiom and a
di�erent one is not. There is no possible enlightening answer to such a question.

10.2 Width of a line of code

Horizontal space is a precious resource that should not be wasted. The width
of a line should preferably not exceed 80 characters. This limit used to be
hard, because some printers or printer drivers would truncate longer lines.
Since it is less common to print code these days, the limit is now soft. The
purpose of keeping lines somewhat short is so that it is possible on a reasonable
monitor to display two documents side by side. One document is typically
a Common Lisp source �le, and the other document is typically the bu�er
containing interactions with the Common Lisp system.

The systematic use of long lines makes the practice of displaying two docu-
ments side by side impossible, or at least impractical. If a single monitor is
used, the programmer then has to �ip back and forth between the source code
and the interaction loop. When two monitors are used, the e�ect is to waste
half a monitor that could otherwise be used for displaying documentation or
something else.

10.3. BLANK LINES 67

10.3 Blank lines

A single blank line is common in the following situations:

� Between two top-level forms.

� Between a �le-speci�c comment and the following top-level form.

� Between a comment for several top-level forms and the �rst of those top-
level forms.

A single blank line may occur inside a top-level form to indicate the separation
of two blocks of code concerned with di�erent subjects, but it would be more
common to put those two blocks of code in separate functions.

There should never be any instance of two consecutive blank lines, and the last
line of the �le should not be blank.

10.4 car, cdr, first, etc are for cons cells

The Common Lisp standard speci�es that the function car, cdr, first, second,
rest, etc return nil when nil is passed as an argument. This fact should
mostly be considered as a historical artifact and should not be systematically
exploited. Take for instance the following code:

(if (first x) ...)

To the compiler, it means �execute the false branch of the if when either x is
nil, or when x is a list whose �rst element is nil�.

To the person reading the code, it means something di�erent altogether, namely
�x holds a non-empty list of Boolean values, and the false branch of the if

should be executed when the �rst element of that list is false. See also Sec-
tion 10.5.

68 CHAPTER 10. GENERAL COMMON LISP STYLE GUIDE

10.5 Di�erent meanings of nil

Consider the following local variable bindings:

(let ((x '())

(y nil)

z)

...)

To the compiler, the three are equivalent. To a person reading the code, they
mean di�erent things, however:

� The initialization of x means that x holds a list that is initially empty.

� The initialization of y means that y holds a Boolean value or a default
value that may or may not change in the body of the let form.

� The absence of initialization of y means that no initial value is given to
z. In the body of the let form, the variable z will be assigned to before
it is used.

The following body of the let form corresponds to the expectations of the
person reading the code:

(let ((x '())

(y nil)

z)

...

(push (f y) x)

...

(unless y (setf y (g x)))

...

(setf z (h x))

...)

The following body of the let form violates the expectations of the person
reading the code:

10.6. TESTS IN CONDITIONAL EXPRESSIONS 69

(let ((x '())

(y nil)

z)

...

(push (f y) z) ; z is used before it is assigned.

...

(unless x ; x is treated as a Boolean.

(setf y (g x)))

...

(push (f x) y) ; y is treated as a list.

...)

10.6 Tests in conditional expressions

The test of a conditional expression should be a (possibly generalized) Boolean
expression. The following expressions correspond to the expectations of the
person reading the code:

(if visited-p ...)

(when (member ...) ...)

(cond ((plusp x) ...) ...)

The following code violates the expectation:

(let ((item (find ...)))

(when item ...))

because item is not a (generalized) Boolean value. It is an item returned by
find, though there is an out of band value (nil) indicating that no item was
found by find. In this case, the corresponding code that corresponds to the
expectations would look like this:

(let ((item (find ...)))

(unless (null item) ...))

70 CHAPTER 10. GENERAL COMMON LISP STYLE GUIDE

10.7 General structure of recursive functions

When possible, a recursive function should be structured like a mathematical
proof by induction. By that we mean that the special case should be handled
�rst so as to reassure the person reading the code that this case can be handled
correctly by the function.

So for instance, assume we have want to write a function that counts the
number of atoms in a tree, we should not write it like this:

(defun count-atoms (tree)

(if (consp tree)

(+ (count-atoms (car tree))

(count-atoms (cdr tree)))

1))

but rather

(defun count-atoms (tree)

(if (atom tree)

1

(+ (count-atoms (car tree))

(count-atoms (cdr tree)))))

Even when the base case does not return anything useful, it should be handled
�rst. The following code violates the expectations:

(defun map-conses (function tree)

(unless (atom node)

(funcall function node)

(traverse (car node))

(traverse (cdr node))))

and should be written like this instead:

10.8. USING CAR AND CDR VS. USING FIRST AND REST 71

(defun map-conses (function tree)

(if (atom node)

nil ; nothing to do

(progn (funcall function node)

(traverse (car node))

(traverse (cdr node)))))

though, admittedly, this example is a little too simple to illustrate the impor-
tance of this rule.

10.8 Using car and cdr vs. using first and rest

While the two functions car and first have the exact same de�nitions, as
do cdr and rest, they send very di�erent messages to the person reading the
code.

The functions car, cdr, etc., should be avoided when the argument is to be
considered as a list, and should be reserved for other uses of cons cells such as
for trees or pairs of values.

It follows that the two families of functions should never be mixed for the same
argument.

10.9 Commenting

Comments are meant to be read by the maintainers of the code. One can
therefore safely assume that the reader is quite familiar with the Common Lisp
language and the main structure of CLIM and Second Climacs.

Comments should be used to explain aspects of the code that are not obvi-
ous from reading the code itself. A comment is the ideal place to introduce
de�nitions of concepts that must be understood in order for the code to make
sense. If the code is structured in a particular way for performance reasons,
then a comment is a good place to indicate such a fact, so as to avoid that the
maintainer be tempted to introduce modi�cations that alter this structure.

72 CHAPTER 10. GENERAL COMMON LISP STYLE GUIDE

10.10 Designators for symbol names

Always use uninterned symbols (such as #:hello) whenever a string designator
for a symbol name is called for. In particular, this is useful in defpackage and
in-package forms.

Using the upper-case equivalent string makes the code break whenever the
reader is case-sensitive (and it looks strange that the designator has a di�erent
case from the way symbol that it designates is then used), and using keywords
unnecessarily clutters the keyword package.

10.11 Docstrings

We believe that it is a bad idea for an implementation of a Lisp system to
have docstrings in the same place as the de�nition of the language item that
is documented, for several reasons. First, to the person reading the code, the
docstring is most often noise, because it is known from the standard what the
language item is about. Second, it often looks ugly with multiple lines starting
in column 1 of the source �le, and this fact often discourages the programmer
from providing good docstring. Third, it makes internationalization harder.

For this reason, we will provide language-speci�c �les containing all docstrings
of Common Lisp in the form of calls to (setf documentation).

10.12 Naming and use of slots

In order to make the code as safe as possible, we typically do not want to export
the name of a slot, whereas frequently, the reader or the accessor of that slot
should be exported. This restriction implies that a slot and its corresponding
reader or accessor cannot have the same name. Several solutions exist to this
problem. The one we are using for Second Climacs is to have slot names start
with the percent character (`%'). Traditionally, a percent character has been
used to indicate some kind of danger, i.e. that the programmer should be very
careful before directly using such a name. Client code that attempts to use

10.13. USING OTHER PACKAGES 73

such a slot would have to write package::%name which contains two indicators
of danger, namely the double colon package marker and the percent character.

Code should refer to slot names directly as little as possible. Even code that is
private to a package should use an internal protocol in the form of readers and
accessors, and such protocols should be documented and exported whenever
reasonable. It sometimes good practice to have multiple accessors for a slot,
one for internal purposes and one for use by client code. This practice allows
for :before, :after, and :around methods on one accessor but not the other.

10.13 Using other packages

The :use option of defpackage and the use-package function should be restricted
to the common-lisp package as much as possible. The reason for this restriction
is that using a package this way represents a commitment to accepting all
exported symbols of that package, current and future, whereas in most cases
there is no guarantee that future modi�cations of the package will not introduce
symbol con�icts. If it is desired to avoid explicit package pre�xes in some
cases, then it is better to use the :import-from option of defpackage to import
an explicitly-supplied list of symbols.

10.14 Conditions, restarts, and reporting

Conditions should not be simple conditions, because we want condition report-
ing to be subject to internationalization. For the same reason, the condition
reporter should not be part of the de�ne-condition form, and instead be written
separately in a �le that contains language-speci�c condition reporters.

Restarts should be provided whenever practical.

74 CHAPTER 10. GENERAL COMMON LISP STYLE GUIDE

10.15 Internationalization

We would like for Second Climacs to have the ability to report messages in the
local language if desired. For this, we use the library named acclimation.1

10.16 Threading and thread safety

Consider the use of locks to be free. A technique called �speculative lock elision�
is already available in some processors, and we predict it will soon be available
in all main processors.

1See https://github.com/robert-strandh/Acclimation

Part VI

Appendices

75

Appendix A

Common Lisp mode

In this chapter, we describe a preliminary design for the data structure to
represent the result of the syntax analysis of Common Lisp programs. This
data structure is to be considered obsolete.

A.1 Syntax

The Common Lisp syntax maintains a tree representing the contents of the
bu�er. A node in the tree is either a code node or a binary tree node.

⇒ code [Class]

This class has a slot representing the position in the bu�er where this code
fragment starts and ends.

⇒ binary-tree [Class]

A binary tree node represents a sequence1 of code fragments. If a bu�er contains
more than one consecutive top-level expression, then the root node of the bu�er
representation is a binary-tree node.

The binary-tree nodes are treated as a splay tree [ST85], in that they can be
dynamically reorganized according to the access pattern. A binary-tree node

1Not a Common Lisp sequence; just a suite.

77

78 APPENDIX A. COMMON LISP MODE

has a contents slot that contains a code node. It also has a left child and a
right child slot. The child of a binary-tree node can be another binary-tree
node or a code node. Either the left child or the right child of a binary-tree
node may be nil, but not both.2

There are three subclass of code:

⇒ expression [Class]

This class is a subclass of the class code. It represents a Common Lisp ex-
pression. The node has a slot containing the expression being represented. An
expression node also contains a slot holding its children. This slot may contain
nil if the node has no children, another expression node if the node has exactly
one child, or a binary-tree node if the node has more than one child.

⇒ whitespace [Class]

This class is a subclass of the class code. It represents a sequence of whitespace
characters. A node of this type is only present when the whitespace is located
at the beginning of a line, and even there, it is optional. It is present only for
longer sequences of whitespace.

⇒ comment [Class]

This class is a subclass of the class code. It represents a Common Lisp com-
ment.

In order to avoid updating the entire tree whenever text is inserted or deleted,
positions of code are relative to some other position p. A position takes the
form < l, c >, where l indicates lines and c indicates columns. If l = 0, then c
is the number of columns to add to the position indicated by p to obtain the
new position. If instead l > 0, then l indicates the number of lines between p
and the new position, and c is the absolute position from the beginning of the
line.

The following rules apply in order to determine the origin of a relative start
position of some node n.

� If the parent of n is a code node, then the start position of n is relative

2If both children were nil the contents node of the binary-tree node would replace the
binary-tree node.

A.1. SYNTAX 79

to the start position of the parent.

� If the parent of n is a binary-tree node, and n is the left child of its
parent, then the start position of n is relative to the start position of its
parent, and its value is always < 0, 0 >.

� If the parent of n is a binary-tree node, n is the contents node of its
parent, and the left child of the parent is nil, then the start position of
n is relative to the start position of its parent, and its value is always
< 0, 0 >.

� If the parent of n is a binary-tree node, n is the contents node of its
parent, and the left child of the parent is not nil, then the start position
of n is relative to the end position of the left child.

� If the parent of n is a binary-tree node, n is the right child of its parent,
then the start position of n is relative to the end position of the contents
node of its parent.

The end position given in some node n is relative to the start position of n.

Consider the following bu�er contents, where the initial left parenthesis is po-
sitioned in column 0:

(let ((x 1)) ; comment

x)

The code tree for that code fragment is shown in Figure A.1.

Common Lisp syntax contains a special version of the Common Lisp reader. It
di�ers from the standard reader in the following ways:

� It never signals an error.

� It records the start and end position of every call, as well as the object
read.

� Instead of calling intern on symbols, it merely records that character
sequence as being a symbol in the current package.

80 APPENDIX A. COMMON LISP MODE

link to child or children

link to contents

link to tree childbinary tree node

(let ((x 1)) x)

((x 1))

(x 1)

x

(_,<1,4>)

let

x

1

(<0,0>,<0,3>) (<0,1>,<0,7>

(<0,1>,<0,5>

(<0,0>,<0,1>) (<0,1>,<0,1>)

(<0,1>,<1,4>)

(<0,1>,<1,4>)

(<1,0>,<0,2>) (<0,0>,<0,1>)expression node

comment node

whitespace node
(<0,1>,<0,3>)

(<0,0>,<0,9>)

Figure A.1: Example of code tree.

A.1. SYNTAX 81

On the other hand, it behaves like the ordinary Common Lisp reader in that
it can handle custom reader macros, even though it provides reader macros for
standard macro characters that behave slightly di�erently from the standard
reader macros.

When some illegal syntax is encountered, it tries to do something reasonable.
For instance if end of �le is encountered in the middle of reading a list, the end
of �le is treated as terminating the list. When an illegal token is encountered,
an object is returned that indicates this fact.

82 APPENDIX A. COMMON LISP MODE

Bibliography

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652�686, July 1985.

83

Index

binary-tree Class, 77
code Class, 77
comment Class, 78
expression Class, 78
whitespace Class, 78

84

