
Fast generic dispatch for Common Lisp

Robert Strandh
University of Bordeaux

351, Cours de la Libération
Talence, France

robert.strandh@u-bordeaux1.fr

ABSTRACT
We describe a technique for generic dispatch that is adapted
to modern computers where accessing memory is potentially
quite expensive. Instead of the traditional hashing scheme
used by PCL [6], we assign a unique number to each class
and the dispatch consists of comparisons of the number as-
signed to an instance to a certain number of (usually small)
constant integers. While our implementation (SICL) is not
yet in a state where we are able to get exact performance fig-
ures, a conservative simulation suggests that our technique
is significantly faster than the one used in SBCL, which uses
PCL, and indeed than the technique used by most high-
performance Common Lisp implementations. Furthermore,
existing work [7] using a similar technique in the context
of static languages suggests that perfomance can improve
significantly compared to table-based techniques.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Optimization, Run-time environments

1. INTRODUCTION
Generic dispatch is an extremely important part of any Com-
mon Lisp implementation, because it constitutes the essence
of the invocation of all generic functions, including accessors.
It is therefore of utmost importance that generic function
dispatch be as efficient as possible.

The efficiency of the generic dispatch technique may have
consequences on the programming style, as programmers
may be dissuaded from using generic functions on standard
instances for reasons of performance, and instead opt in fa-
vor of ordinary functions on other types of data structures
such as structure instances, arrays, or lists, even though
standard instances have better behavior in the context of
interactive and incremental development.

Conversely, with a high-performance generic dispatch tech-

nique, better data structures can be used, including in the
implementation itself, with less special-purpose code and
therefore improved maintainability as a result.

While it may seem like techniques for efficient generic dis-
patch exist, and indeed are part of most high-performance
Common Lisp implementations, many of those techniques
and implementations date back a few decades, and the pa-
rameters that determine efficiency have changed radically as
a result of the increasing gap between processor speed and
memory-access time.

2. PREVIOUS WORK
Most work on generic dispatch has been done in the context
of more mainstream programming languages such as C++
or Java. There are three aspects of Common Lisp that com-
plicate the situation with respect to such languages:

1. Multiple inheritance.

2. Multiple dispatch.

3. Interactivity.

Multiple inheritance1 makes it possible for a slot to have
a different position in the slot vector in instances of differ-
ent classes. Slot accessors must take this possibility into
account.

Multiple dispatch makes it more difficult to use table-based
techniques with entries for each class, because the size of
the table grows exponentially in the number of specialized
parameters. Table-compression techniques help overcome
some of these problems, at the cost of a more complicated,
and thus more expensive, dispatch algorithm.

Many existing techniques are based on the complete program
being available in order to compute dispatch tables. The
interactive nature of Common Lisp makes it more difficult
to use such techniques, because every table may have to
be recomputed whenever a small modification is made to
a class. Though, some techniques may amortize this cost
by invalidating some tables and recomputing them when
required.

The fact that Common Lisp is interactive also makes it pos-
sible for the existence of obsolete instances, i.e., instances
1C++ also has multiple inheritance of course.



where the slots no longer correspond to the definition of the
class, so they have to be updated before they are inspected.

2.1 PCL
In PCL2 [6] a standard object is represented as a two-word
header object where the first words is a pointer to a class
wrapper and the second word is a pointer to the slot vector of
the instance. The class wrapper is also a two-word structure
that contains a hash seed and a pointer to the class object.

Each generic function contains a memoization table. Each
entry of the table contains a class wrapper and the entry
point for the effective method to be called for instances of
the corresponding class. The memoization table uses a sim-
ple hashing mechanism, so that the hash seed of the class
wrapper of the argument is reduced modulo the size of the
memoization table in order to find the corresponding entry.
The class wrapper in the entry is compared using eq to the
class wrapper of the argument, and if they are the same, the
corresponding effective method is called. When there is no
hit, it could be that there is a hash collision, or it could be
that no entry exists in the table for the class of the argu-
ment. Thus, if there is no initial hit, the table is searched
sequentially until an entry is found or all the entries have
been examined.

In the best case then, the following operations are required
for a simple slot reader generic function:

1. Access the class wrapper of the argument; a memory
access.

2. Access the hash seed of the class wrapper; a memory
access.

3. Access the size of the memoization table; a memory
access.

4. Reduce the hash seed of the class wrapper modulo the
size of the memoization table; a simple masking oper-
ation if the size of the table is a power of 2.

5. Access the memoization table of the generic function;
a memory access.

6. Access the class wrapper in the memoization table en-
try; a memory access.

7. Compare the class wrapper in the memoization table
entry to the class wrapper of the argument; a simple
register comparison.

8. Access the entry point of the effective method in the
memoization table entry; a memory access.

9. Jump to the entry point of the effective method; an
unconditional jump.

10. The effective method accesses the slot vector of the
instance; a memory access.

11. The slot containing the desired object is read and re-
turned; a memory access.

2PCL stands for Portable Common Loops.

As we can see, there are 8 memory accesses involved.

The authors also mention an optimization for slot readers
and slot writers in the case where such a generic function is
called with only a few different classes. In that case, they
suggest replacing the table lookup with a simple test for
the different cases. However, since class wrappers are heap-
allocated objects, a copying garbage collector may move
them around. For that reason, class wrappers can not be in-
line constants in the code, and must be stored in the generic
function. If such an optimization is implemented, the mech-
anism is reduced to the following steps:

1. Access the class wrapper of the argument; a memory
access.

2. Access one or more class wrappers stored in the generic
function; at least one memory access.

3. Compare the class wrapper of the argument to the
class wrapper(s) stored in the generic function; fast
register operation.

4. Access the slot vector of the instance; a memory access.

5. The slot containing the desired object is read and re-
turned; a memory access.

The minimum number of memory access is reduced to 4 if
the generic function is called with instances of a single class.

The technique used by PCL automatically catches obsolete
instances. When a class is modified, the current wrapper is
eliminated from all existing memoization tables, forcing the
lookup to fail, and thus triggering the update of the obsolete
instance.

While not mentioned in the published work, PCL also al-
lows for a discriminating function that tests argument types
using typep. While in general quite expensive, typep can
be efficient when a built-in type known at compile time is
tested for. If the number of cases is small and the typep test
can be determined to be inexpensive, then this kind of dis-
criminating function could potentially achieve performance
similar to our technique.

2.2 Work by Zendra et al
Perhaps the work that is most similar to ours is that of
Zendra et al [7]. Like the present work, they are interested
in performance improvements to dispatch on modern archi-
tectures by eliminating table lookups. Unlike the present
work, the context of their work is a static language (Eif-
fel) which simplifies many aspect of the optimization. For
one thing, they use global type inference to optimize away
dispatch entirely when not needed, and they can inline the
dispatch mechanism at each call site because there can be
no changes to the class hierarchy or to the applicable meth-
ods at runtime. Like the present work, they also use inline
code performing a binary search in order to determine which
applicable method to invoke.



2.3 Other work
Dreisen et al [2] give an overview of different dispatch tech-
niques in the context of modern processor architectures.
They are specifically interested in the influence of processor
pipelining and superscalar execution on the performance of
various dispatch techniques. In addition, they take into ac-
count the influence of dynamic typing on the dispatch cost.
In particular, they mention the fact that, with multiple in-
heritance, the location of a slot may vary according to the
exact runtime type of an object. Their study is limited to
the case of single dispatch. Nevertheless, they treat both
static techniques and dynamic techniques, including call-site
caching. Most of the techniques used are based on some kind
of table lookup, including the dynamic techniques contain-
ing a table (which can be small) used as a cache. They
conclude that table-based methods are expensive on mod-
ern hardware, and that inline caching is likely to perform
the best on modern processors.

The work of Zibin and Gil [8] also discusses table-based tech-
niques. Their paper addresses multiple inheritance and mul-
tiple dispatch, but concentrates on the efficiency of the al-
gorithm for building the dispatch table and the size of the
resulting dispatch table.

In their 2012 paper, Hariskrishnan and Kumar [4] also sac-
rifice efficiency of the dispatch algorithm in favor of space
efficiency by removing the lookup table altogether. They
propose the alternative name constant-time technique for
table-based technique, and non-constant-time for techniques
that do not use table lookup. Their technique is applicable
only to single inheritance systems.

The technical report of Bachrach and Burke [1] is concerned
with the language Dylan which is similar to Common Lisp
in many respects, although in terms of generic dispatch, it
allows for specializers other than classes and singletons, and
features such as sealing of classes and methods allow for
further optimizations of generic dispatch. Their approach
is similar to ours, in that they construct a decision tree for
each generic function. It is different from ours in that the
decision tree is not implemented as inline code, but instead
as a data structure consisting of engine nodes, requiring the
dispatch code to make several memory accesses. On the
other hand, their technique is more flexible in that it allows
for each call site to exploit the decision tree and optimize
according to locally available information, sometimes result-
ing in particular call sites not requiring any dispatch code at
all. Unfortunately, this technical report is in an unfinished
state, making it hard to determine the work and the results
behind it.

Dujardin et al [3] give a fast algorithm for creating com-
pressed tables for multiple dispatch. While the dispatch
is still constant time after compression, as with other table-
compression techniques, theirs adds overhead to the dispatch
itself. The unique number of the type of each argument must
be used to index a per-argument table in order to obtain in-
dices in the compressed table. And of course the element
in the compressed table must then be accessed (requiring
index arithmetic and a memory access) before the relevant
method can be invoked. Merging the per-argument tables
using standard table-compression techniques add yet more

header

instance
rack

class

Figure 1: Representation of a general instance.

comparisons and memory accesses.

Like Bachrach and Burke, Hölze and Ungar [5] optimize dis-
patch by specializing the dispatch algorithm for each call
site. They use run-time type information as feedback to the
compiler which can then often create more efficient dispatch
code simply because for a given call site it is common that
only a small subset of all possible argument types are actu-
ally used. We have not addressed this possibility, because
it would require a way to recompile the caller, or at least
a single call site whenever a change to the callee or to the
class hierarchy is made.

3. OUR TECHNIQUE
A SICL object is either an immediate object or a heap object.
A heap object is either a cons cell or a general instance.3

General instances and cons cells have distinct unique tags.
Every general instance is represented by its header. The
header contains two pointers, one to the class of the instance
and one to the rack of the instance. The pointer to the class
is a tagged pointer to another general instance. The pointer
to the rack is a raw machine pointer. This representation is
shown in Figure 1.

Each class is assigned a unique number starting at 0. The
number is assigned when the class is finalized, and a new
number is assigned whenever a class is finalized as a result
of changes to the class or any of its superclasses. Currently,
class numbers are never reused. This way of allocating class
numbers is advantageous because it often results in a sub-
tree of classes occupying a dense interval of class numbers,
the importance of which is discussed below. On a 64-bit ar-
chitecture with 63-bit or 62-bit fixnums, the unique number
will always be a fixnum. On 32-bit architectures this is very
likely also true, and it is certainly true if class numbers are
reused.4 If class numbers are not reused, on a 32-bit plat-

3Since heap allocated objects are either cons cells or general
instances, it follows that general instances are used to repre-
sent not only standard objects, but also structure instances,
instances of built-in classes such as symbol and package,
arrays, bignums, complex numbers, etc.
4The garbage collector would have to take care of recycling



form one might have to use two words in order to be on the
safe side.

The first element of the rack of every general instance is
called the stamp. The stamp is the unique number of the
class as it was when the instance was created or updated as
a result of changes to its class. An instance is obsolete if
and only if its stamp is not the same as the unique number
of its class.

Together, the unique number of the class and the stamp of
the instance play a role similar to that of the class wrapper
of PCL. The unique number of the class corresponds to the
most recent wrapper for the class and the stamp corresponds
to a wrapper that may have become obsolete as a result of
updates to the class.

Our dispatch technique works by comparing the stamp of
each specialized argument to a set of non-negative constant
integers in a way similar to a binary search. The result of
these comparisons identifies the argument as being an in-
stance of a particular class, or of one of a set of classes for
which the same effective method is valid. As an example,
let us take a generic function that specializes on a single ar-
gument, and that has already been called with classes num-
bered 1, 4, 5, 6, 8, and 10, where classes numbered 4, 5, and
6 result in the same effective method being invoked. The
discriminating function of this generic function would then
look like this:

(tagbody

(if (< stamp 7)

(if (< stamp 4)

(if (= stamp 1)

(go m1)

(go miss))

(go m2))

(if (= stamp 8)

(go m3)

(if (= stamp 10)

(go m4)

(go miss))))

m1

;; invoke method for class numbered 1

...

(go out)

m2

;; invoke method for classes numbered 4, 5, 6

...

(go out)

m3

;; invoke method for class numbered 8

...

(go out)

m4

;; invoke method for class numbered 10

...

(go out)

miss

;; handle miss

...

class numbers.

out)

This discriminating function is generated from the call his-
tory of the generic function. The call history is a simple list
of entries, where each entry contains a list of classes for each
specialized parameter and a corresponding effective method
to call.

As can be seen from the example above, in this case, a maxi-
mum of three tests will be performed for six different classes.
The number of tests required is logarithmic in the number
of entries of the call history.

The advantage of this technique is that on modern proces-
sors, comparing integers is very fast, whereas table lookups
require memory accesses which are significantly more costly
in general.

In terms of different types of operations, our technique re-
quires the following steps for a simple slot reader:

1. Access the rack of the argument; a memory access.

2. Access the stamp of the rack; a memory access.

3. Compare the stamps to a set of constants; fast register
operations.

4. The slot containing the desired object is read and re-
turned; a memory access.

As we can see, only 3 memory accesses are required. The
number of comparisons is not constant, of course, but it is
very small for the vast majority of generic functions, and
quite reasonable (compared to the cost of a memory access)
even when a very large number cases need to be handled.

Like the technique used by PCL, our technique automati-
cally detects obsolete instances. When a class is updated,
every generic function that dispatches on this class5 is de-
termined, and the call history of each such generic function
is searched for entries using the class. These entries are
removed and then the discriminating function is either re-
computed from the call history, or is set to a function that,
when invoked, recomputes the discriminating function from
the call history. The result is that, if an obsolete instance
is used in dispatch, its stamp will not be valid for dispatch,
so the discriminating function will fail to recognize the in-
stance, forcing an update of the instance, and a new dispatch
attempt.

In contrast to the technique used by PCL, our technique
makes it more costly to update classes. In PCL, invalidat-
ing a class wrapper is a simple matter of setting the hash
seed to 0. Our technique requires that the call history be
updated and the discriminating function to be recomputed
for every generic function with a method that specializes on
the class being updated. While this cost is unbounded, it is
acceptable in practice.

5The function specializer-direct-generic-functions
returns a list of generic functions that have a method us-
ing the class as a specializer.



While not directly related to dispatch performance, an im-
portant consequence of the split between the header and
the rack for every general instance is that generic functions
can be updated without requiring locking, by using a simple
version of software transactional memory. When a generic
function needs to be updated, for instance as a result of one
of the classes it specializes on being updated, the rack and
the call history can be copied, and then modifications can
be made to the copy, and finally, the copied rack can replace
the original rack by the use of a compare-and-swap instruc-
tion. Should the instruction fail, the attempted update is
restarted.

4. PERFORMANCE OF OUR TECHNIQUE
Unfortunately, our system (called SICL) is not yet in suf-
ficiently finalized to allow us to make any tests of perfor-
mance. However, we constructed a few simulations that
give us some indications of the performance of our technique
compared to the technique used by PCL.

In our first test, we decided to measure the time it takes for
the generic dispatch of a simple slot reader.

First, we created a class with a single slot and a reader for
that slot like this:

(defclass c () ((%x :initarg :x :reader x)))

Next, we defined an instance of this class:

(defparameter *i* (make-instance ’c :x 1))

Then, we created a function containing a loop where the slot
reader is called in each iteration:

(defun f ()
(declare (optimize (safety 0) (speed 3) (debug 0)))
(loop with i = *i*

repeat 10000
do (loop repeat 100000

do (x i))))}

In order to minimize overhead due to looping, we set the optimize
flags as shown.

The loop calls the reader 109 times. Since 109 may not be a
fixnum on some 32-bit platforms, we use a nested loop. The
table below shows the result of this test on a small selection of
platforms.

Impl OS Proc Clock Time Cyc

SBCL 1.1.13 MacOS x86-64 1.8GHz 11 20
SBCL 1.1.16 MacOS x86-64 3.3GHz 4.7 16
SBCL 1.1.18 Linux x86-64 1.6GHz 12 19

CMU 20d Linux x86-64 3GHz 158 474
Allegro 9.0 MacOS x86-64 2.2GHz 10 22

LispWorks 6.1.1 Windows x86-64 3GHz 11 33
Clozure 1.9 MacOS x86-64 3.3GHz 21 69
ABCL 1.2.1 MacOS x86-64 1.8GHz 183 329
ABCL 1.0.1 Linux x86-64 3GHz 152 456

The time includes not only calling the slot reader, but also the
loop iteration overhead. Furthermore, calling the slot reader in-
volves not only the generic dispatch, but also checking the argu-
ment count and some other function-call overhead. For now, we
ignore all this overhead.

In the table, we have included only implementations reputed to
be “high-performance”, though some interpreted implementations
such as CLISP and ECL compare favorably to the slower imple-
mentations that we tested. An important aspect that is not in-
cluded in the table is whether the implementation is thread safe or
not. Thread safety may have a negative impact on performance,
so implementations that are not thread safe may look better in
comparison. Unfortunately, we do not know which implementa-
tions are thread safe among the ones in the table, except that we
know that LispWorks 6.1.1 is thread safe.

Note that the test above was designed to be as advantageous as
possible to table-based techniques in the following ways:

• The only instance involved will rapidly reside in the cache,
so the additional cost of memory references is not measured.

• There is a single class involved, allowing the implementa-
tion to select a better strategy for the discriminating func-
tion, as the paper on PCL suggests.

To get some indication of the performance of our technique, we
need to simulate the layout of a SICL general instance. We do
that by defining the header as a Common Lisp struct and by
using a simple vector for the rack. The definition of the header
looks like this:

(defstruct s class rack)

We create a simulated general instance as follows:

(defparameter *j*
(let ((rack (make-array 2 :initial-contents ’(10 1))))
(make-s :class nil :rack rack)))

Our simulated slot reader is defined like this:

(defun y (instance)
(declare (optimize (safety 0) (speed 3) (debug 0)))
(let* ((rack (s-rack instance))

(stamp (svref rack 0)))
(declare (type fixnum stamp))
(if (= stamp 10)

(svref rack 1)
(error "1"))))

(proclaim ’(notinline y))

Finally, we define a function containing a loop that calls our sim-
ulated slot reader:

(defun g ()
(declare (optimize (safety 0) (speed 3) (debug 0)))
(loop with j = *j*

repeat 1000000000
do (y j)))



On our computer (x86-64 running at 1.6GHz) executing this func-
tion takes less than 3 seconds, which represents a significant im-
provement. Comparing to the table above, 3 seconds represents
5 clock cycles.

The comparison above is somewhat biased in our favor, because
we can not be sure that a single test will suffice in order to deter-
mine the correct method to invoke. For that reason, we devised
the following test:

(defun yy (instance)
(declare (optimize (safety 0) (speed 3) (debug 0)))
(let* ((rack (s-rack instance))

(stamp (svref rack 0)))
(declare (type fixnum stamp))
(cond ((> stamp 1280) (error "1"))

((> stamp 640) (error "2"))
((> stamp 320) (error "3"))
((> stamp 160) (error "4"))
((> stamp 80) (error "5"))
((> stamp 40) (error "6"))
((> stamp 20) (error "7"))
((> stamp 10) (error "8"))
(t (svref rack 1)))))

(proclaim ’(notinline yy))

(defun gg ()
(declare (optimize (safety 0) (speed 3) (debug 0)))
(loop with j = *j*

repeat 1000000000
do (yy j)))
maximize (yy (car l))))

This test simulates a situation where the generic dispatch needs 8
tests to determine what method to call, which can be thought of
as a generic function with 256 methods, or alternatively a single
method but where the call history contains 256 classes with sparse
unique numbers.

On our computer executing this function takes less than 4.5 sec-
onds, which seems to suggest that the number of comparisons has
only a modest impact on the performance. In fact, the numbers
suggest that less that one additional clock cycle per additional
comparison is required.6

The following test is meant to show the impact of a very large
number of classes, so that constants are no longer very small:

(defun yyy (instance)
(declare (optimize (safety 0) (speed 3) (debug 0)))
(let* ((rack (s-rack instance))

(stamp (svref rack 0)))
(declare (type fixnum stamp))
(cond ((> stamp 12800000) (error "1"))

((> stamp 6400000) (error "2"))
((> stamp 3200000) (error "3"))
((> stamp 1600000) (error "4"))
((> stamp 800000) (error "5"))
((> stamp 400000) (error "6"))
((> stamp 200000) (error "7"))
((> stamp 100000) (error "8"))
(t (svref rack 1)))))

(proclaim ’(notinline yyy))

(defun ggg ()

6In this case, however, the branch prediction circuits of the
processor always guess the right thing

(declare (optimize (safety 0) (speed 3) (debug 0)))
(loop with j = *j*

repeat 1000000000
do (yyy j)))

On our computer executing this function takes exactly the same
time to execute as the previous one, which seems to suggest that
the size of the constants has very little impact on performance,
at least on our platform.

The tests include loop overhead that should be subtracted from
the timing results, but this overhead is probably very small, so
we can ignore it. Furthermore, disassembling the simulated slot
readers show that the code is very close to what we expect the
SICL compiler to emit, so there is very little overhead there as
well.

Notice, however, that the results all include the overhead of a
function call. This function call can not be avoided, which sug-
gests that our results reflect the real observable improvement.
However, in order to appreciate the performance improvement
of dispatch mechanism itself, the overhead of the function call
should not be included, which suggests that the net improvement
is significantly higher than a factor 3.

5. CONCLUSIONS AND FUTURE WORK
We have presented a fast technique for generic dispatch in Com-
mon Lisp. Clearly, our tests do not represent any scientifically
convincing argument that our technique is faster than existing
techniques. Rather, the presentation of the technique itself should
be considered essence of the paper, and the performance simula-
tions should only be viewed as indications that our technique is
worth pursuing as the bases of the generic dispatch mechanism
in SICL.

Having said that, we can still speculate about the impact of our
technique, should the results be confirmed in a more realistic
setting.

With our technique, the amount of work to be done in a simple
slot reader or slot writer is no greater than the work needed for a
non-generic version, such as symbol-name or package-nicknames
in a typical Common Lisp implementation. Our technique there-
fore makes it feasible to make such readers and writers generic,
and this is exactly what we do in SICL. We use the same CLOS
mechanisms (i.e., class initialization, class finalization, etc.) for
built-in classes as those used for standard classes, even though
built-in classes can not be redefined. By using the same mech-
anism, we remove a number of special cases and we are able to
simplify the overall structure of the system.

It is even possible to go one step further. The amount of work
required in our dispatch mechanism is no greater than the work
needed in a binary addition function that tests for the exact type
of its arguments. Hence it is entirely feasible to make such a
function generic, allowing the user to add methods for other kinds
of objects such as polynomials or other mathematical objects.
For reasonable performance, it would still be required to capture
special cases such as fixnum or floating-point addition and inline
them, but the default function could very well be an ordinary
generic function without any significant loss of performance.

Although it is easy to switch to a different mechanism when the
number of methods turns out to be very large, or more generally,
when the call history contains a large number of elements, prelim-
inary tests indicate that it might not be necessary to do so. The
canonical example of a generic function where a different mecha-
nism might be considered is that of print-object. However, our
preliminary tests show that the additional cost of a comparison
is very small (a single processor cycle) so that even if the call
history is very large, the cost of these comparisons is modest.



For a scientifically significant comparison of our technique to ex-
isting techniques, we first need to get SICL into a sufficiently
finished state that more elaborate tests can be designed. In par-
ticular, we then need to test situations where cache misses might
significantly impact performance. Furthermore, we need to gather
information about techniques used in existing high-performance
implementations, which may not be easy since several of the exist-
ing high-performance implementations are commercial and closed
source.

6. ACKNOWLEDGMENTS
We would like to thank Pascal Bourguignon, Stas Boukarev, Dave
Fox, and Hans Hübner for their help with the tests on platforms
not at our disposal. We would also like to thank Christophe
Rhodes for reading an early draft of the paper and for suggesting
improvements, and to the developers at LispWorks for pointing
out the potential influence of thread-safety on performance.

7. REFERENCES
[1] J. Bachrach and G. Burke. Partial dispatch: Optimizing

dynamically-dispatched multimethod calls with compile-time
types and runtime feedback. Technical report, 2000.

[2] K. Driesen, U. Hölzle, and J. Vitek. Message dispatch on
pipelined processors. In Proceedings of the 9th European
Conference on Object-Oriented Programming, ECOOP ’95,
pages 253–282, London, UK, UK, 1995. Springer-Verlag.

[3] E. Dujardin, E. Amiel, and E. Simon. Fast algorithms for
compressed multimethod dispatch table generation. ACM
Trans. Program. Lang. Syst., 20(1):116–165, Jan. 1998.

[4] S. Harikrishnan and R. Kumar. Space efficient non-constant
time multi-method dispatch in object oriented systems.
SIGSOFT Softw. Eng. Notes, 37(2):1–6, Apr. 2012.

[5] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched
calls with run-time type feedback. In Proceedings of the
ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, PLDI ’94, pages
326–336, New York, NY, USA, 1994. ACM.

[6] G. Kiczales and L. Rodriguez. Efficient method dispatch in
pcl. In Proceedings of the 1990 ACM Conference on LISP
and Functional Programming, LFP ’90, pages 99–105, New
York, NY, USA, 1990. ACM.

[7] O. Zendra, D. Colnet, and S. Collin. Efficient dynamic
dispatch without virtual function tables: The smalleiffel
compiler. In Proceedings of the 12th ACM SIGPLAN
Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’97, pages 125–141,
New York, NY, USA, 1997. ACM.

[8] Y. Zibin and J. Y. Gil. Fast algorithm for creating space
efficient dispatching tables with application to
multi-dispatching. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’02, pages
142–160, New York, NY, USA, 2002. ACM.


