1 The flexichain protocol

In this section, we describe the flexichain protocol, allowing client code to
dynamically add elements to, and delete elements from a sequence (or chain)
of such elements.

1.1 The concept of a position

A flexichain uses the concept of a “position”, which has two different meanings
in different contexts.

The first meaning is the position at which an element is located in the chain.
In this context, the position must have a value between 0 and [— 1, where
l is the length of the chain. This meaning is used when an element is to be
deleted or when an element is accessed or replaced.

The second meaning is the position between two elements (or at one of the
extreme ends of the chain). In this context, the position may have a value
between 0 and the length of the chain inclusive. The position 0 means the
beginning of the chain (before the first element, if any), and the position
equal to the length means the end of the chain (after the last element if
any). This meaning is used when an element is to be inserted.

1.2 Performance

Accessing and replacing an element are constant-time operations.

We guarantee linear average complexity of a sequence of insert and delete
operations provided that the position of two successive operations in the
sequence is bounded.

More specifically, the average complexity of an operation is proportional to
the difference between the position of the operation and the position of the
previous operation.

Here we actually consider distance modulo the length of the chain so that the
distance between the last position and the first is 1. In particular, the longest
possible distance between to operations is half of the number of elements in
the chain.

The implementation will allocate more space than is necessary. Whenever
space runs out, we allocate a bigger chunk of memory to hold the elements.
The new chunk size will be [k, were [again is the length of the chain and
k is a constant factor. We multiply rather than add, because we want to
guarantee the linear average complexity of a sequence of insert and delete
operations. Typically, k is somewhere between 1.5 and 2. The default value
is k=1.5.

We shrink the space whenever the length of the chain (the number of el-
ements) is significantly smaller than the available space. By default, the
definition of “significantly” is that the ratio of length to size must be less
than 1/k? in order for the space to be shrunk. Again, the new chunk size
will be lk.

Using the default value of k, this means that the amount of wasted space can
be as large as the length of the chain in the worst case, but for a sequence
of insert operations, the average wasted space is only 25%.

Applications that store a number of elements that does not vary much, can
choose a small value for the k to waste less space. Such applications will
have to resize the space relatively rarely so performance will not be affected
by small values of k.

The space will not shrink below a minimum size (default 5 elements). The
reason for this is to avoid to many resize operations for small chains. It is
probably not reasonable to use a value below around 5, since the bookkeeping
information takes up at least this much space. This value is also used for the
initial size of the chain. Applications that will typically store a large number
of elements can choose a greater value for the minimum size. Doing so also
improves performance since fewer resize operations will have to be executed.

1.3 Protocol classes and functions

Many names of operations in this section have a terminatin “*” which is
meant to suggest a spread version of the operation. Later (in the flexicursor
section) we give nospread versions of the operations.

flexichain [Protocol Class|

The protocol class for flexichains.

R

:initial-contents []
:element-type [|
:fill-element [Initarg]
:expand-factor [|
:min-size | |

All instantiable subclasses of flexichain accept these initargs.

The :initial-contents initarg is a sequence (list, vector, string) of objects
to be stored in the flexichain from the start.

The :element-type initarg determines the type of the elements of the flexichain

(default is t).

The :fill-element initarg should be an object that is compatible with the
:element-type initarg and will be used to fill unoccupied space in the chain
(to help the garbage collector). The default value for this initarg will be
supplied by the implementation according to the element-type given. The
implementation will test nil, 0, and #\a. If none of these values will work,
the client must supply a value that is compatible with :element-type.

The :expand-factor initarg is used to determine the factor by which the
available space will be multiplied whenever the space for the chain is full.
Default value is 1.5.

The :min-size initarg determines the smallest space allocated to hold ele-
ments of the chain. Default value is 5. It is not reasonable to supply values
smaller than 5.

The instance created by make-instance will have a length which is that of
the sequence given by :initial-contents or 0 if no :initial-contents
was given.

standard-flexichain [Class|
The standard instantiable subclass of flexichain.

nb-elements chain [Generic Function]
Return the number of elements in the flexichain chain.

flexi-error [Error Condition)|

The base condition for all conditions that may be signaled by the operations
on flexichains.

= flexi-position [Error Condition]

This condition will be signaled by operations that require a position argu-
ment whenever that argument is out of range.

= insert* chain position object [Generic Function]

Insert an object at position of the flexichain. If position is out of range (less
than 0 or greater than the length of chain), the flexi-position condition
will be signaled.

= delete* chain position [Generic Function]

Delete an element at position of the flexichain. If position is out of range (less
than 0 or greater than or equal to the length of chain), the flexi-position
condition will be signaled.

= delete-elements* chain position n |Generic Function)|

Delete N elements at position of the flexichain. If position + N is out of
range (less than 0 or greater than or equal to the length of chain, the flexi-
position-error condition will be signaled, and nothing will be deleted. n
can be negative, in which case elements will be deleted before position.

= element* chain position | Generic Function)|

Return the element at position of the chain. If position is out of range (less
than 0 or greater than or equal to the length of chain), the flexi-position
condition will be signaled.

= (setf element*) object chain position |Generic Function|

Replace the element at position of chain by object. If position is out of range
(less than O or greater than or equal to the length of chain), the flexi-
position condition will be signaled.

1.4 Stack and queue operations

A flexichain can be used as a stack or as a queue with very good per-
formance. In this section, we suggest a set of operations to facilitate such
use.

= push-start chain object [Generic Function]

Insert an object at the beginning of the chain.

push-end chain object [Generic Function]

Insert an object at the end of the chain.

pop-start chain |Generic Function)|

Pop and return the element at the beginning of the chain

pop-end chain [Generic Function]

Pop and return the element at the end of the chain

rotate chain &optional (n 1) | Generic Function)|

Rotate the elements of the chain so that the element that used to be at
position n now is at position 0. With a negative value of n rotate the
elements so that the element that used to be at position 0 now is at position
n. When the magnitude of n is greater than the length of the chain, the
operation wraps around so that it becomes equivalent to the same operation
with a value of n modulo the length. When the length of the chain is less
than 2, this function does nothing.

2 Implementation of the flexichain protocol

2.1 Representation

We keep elements in a vector treated as a circular gap buffer with two sentinel
elements, one before the first element of the chain (with a position of —1),
and one after the last element of the chain (with a position equal to the length
of the chain). We use the word position to refer to the abstract position of
an element in a flexichain, and the word index when we talk about indexes
of the gap buffer used in the implementation. We say that an index i is valid
if 0 <i <[where [is the size of the vector (the vector is never of size 0, so
it is always the case that [> 0).

We use the term extended element to mean a user element or a sentinel.

We say that the vector is full when it contains as many extended elements
as its length (i.e., the gap has a size of 0), and empty when it contains no
user elements (and thus only the sentinels) (i.e., the gap is the size as the

Figure 1: Gap and data are both contiguous

Figure 2: Data is not contiguous

vector minus 2).

There are three different possible configurations of the gap with respect to
the data. Figure 1 shows the case where both the gap and the data are con-
tiguous. Figure 2 shows the case where the data is not contiguous. Finally,
figure 3 shows the case where the gap is not contiguous.

The implementation of a flexichain allows for the first element (i.e., the
first sentinel with a position of —1) to be located at any valid index of the
vector. For that reason, we need an index (called data-start) which always
indicates the index of the first sentinel i.e.. data-start is always a valid
index

A positional indez is an index in the vector that corresponds to a position
in the flexichain, and so is an index either of a user object or the index of
the last sentinel.

We introduce two different indexes (always valid as well), gap-start and
gap-end. The gap-start index is the first index of the gap. When the

Figure 3: Gap is not contiguous

vector is not full, the gap-start is always an index containing no extended
element, such that the previous index does contain an extended element.
The gap-end index is the first index beyond the gap and is always the index
of an extended element. When the vector is not full, the previous index
does not contain an extended element. Notice that for certain configurations
gap-start is smaller than gap-end and for certain other configurations, the
reverse is true.

When the vector is full, gap-start and gap-end are always equal.

2.2 Computing and index from a position

Step one in inserting or deleting an element is to determine an index corre-
sponding to the position. Here is how it is done: we compute a value s which
is equal to gap-start if gap-start is greater than data-start. Otherwise
s is equal to gap-start plus the size of the vector. The position is added
to data-start, giving the value . If ¢ is greater than or equal to s, the size
of the gap is added to . Finally, if ¢ is greater than or equal to the length
of the vector, the length of the vector is subtracted from 4 (prove that the
result is always a positional index). Call this final value of i the hot spot.

2.3 Moving the gap to the right place

After determining the index from a position, we need to determine whether
the gap is in the right place. This is the case if and only if the hot spot is
equal to gap-end. If that is not the case, we need to move the gap.

There is a case when it is particularly simple to move the gap, namely when
the vector is full. In that case, we can just assign both gap-start and
gap-end to the value of the hot spot.

There are two ways of getting gap-end to be equal to the hot spot either
move everything to the left of the hot spot even further left, or everything
to the right of the hot spot (including the hot spot itself) even further right.
We always do the one that requires the fewest elements to be moved. One
solution will require fewer than half the elements to be moved and the other
one at least half.

Moving to the right will require that a number of elements equal to the

difference between gap-start and the hot spot to be moved, provided that
gap-start is greater than the hot spot. If gap-start is smaller than the
hot spot, it is that difference plus the size of the vector. We check whether
that value is smaller than half of nb-elements.

Moving the elements requires one, two, or three calls to replace.

2.3.1 Moving elements to the left

Let us first consider the case of moving elements to the left.

Case 1: If the entire contiguous gap is to the left of the hot spot (as in the
upper half of figure 1 or as in figure 2 with the hot spot to the right of the
gap), a single call is required.

Case 2:A single call is also required if the highest valid index is inside the gap
(as in the lower part of figure 1 and in figure 3) provided that the number
of elements to be moved is no greater than the part of the gap that is flush
right in the vector.

Case 3: Two calls are needed if the highest valid index is inside the gap (as
in the lower part of figure 1 and in figure 3), but the number of elements to
be moved is greater than the part of the gap that is flush right in the vector.
The first call will fill the part of the gap that is flush right in the vector,
giving the situation of the upper half of figure 1. The second call will be as
in case 1 above.

Case 4: Two calls are also needed if the data is not contiguous (as in figure 2)
and the entire contiguous gap is to the right of the hot spot, but the number
of elements to the left of the hot spot (i.e., the index of the hot spot before
the move) is no greater than the size of the gap. The first call will move
everything to the right of the gap so that the gap will be flush right as in
case 2 above. The second call will move the remaining elements.

Case 5: Three calls are needed if the data is not contiguous (as in figure 2)
and the entire contiguous gap is to the right of the hot spot, but the number
of elements to the left of the hot spot (i.e., the index of the hot spot before
the move) is greater than the size of the gap. The first call will move the
gap flush right, creating the situation of case 3 above (which then requires
another two calls).

2.3.2 Moving elements to the right

Let us now consider moving elements to the right.

Case 1: If the entire contiguous gap is to the right of the hot spot (as in the
lower half of figure 1 or as in figure 2 with the hot spot to the left of the
gap), a single call is required.

Case 2:A single call is also required if the index 0 is inside the gap (as in the
higher part of figure 1 and in figure 3) provided that the number of elements
to be moved is no greater than the part of the gap that is flush left in the
vector.

Case 3: Two calls are needed if index 0 is inside the gap (as in the lower
part of figure 1 and in figure 3), but the number of elements to be moved is
greater than the part of the gap that is flush left in the vector. The first call
will fill the part of the gap that is flush left in the vector, giving the situation
of the lower half of figure 1. The second call will be as in case 1 above.

Case 4: Two calls are also needed if the data is not contiguous (as in figure 2)
and the entire contiguous gap is to the left of the hot spot, but the number
of elements to the right of the hot spot (i.e., the index of the hot spot before
the move) is no greater than the size of the gap. The first call will move
everything to the left of the gap so that the gap will be flush left as in case
2 above. The second call will move the remaining elements.

Case 5: Three calls are needed if the data is not contiguous (as in figure 2)
and the entire contiguous gap is to the left of the hot spot, but the number
of elements to the right of the hot spot is greater than the size of the gap.
The first call will move the gap flush left, creating the situation of case 3
above (which then requires another two calls).

2.4 Increasing the size of the vector

We increase the size of the vector whenever it is full and another element
needs to be added.

When this call is made, gap-start and gap-end have the same value. We
must preserve the position of the gap in the new vector.

A new vector with the size of the number of required elements multiplied by

size-multiplier is first allocated.

Next, we copy (using a single call to replace) all elements before the gap
to the start of the new vector. Then we copy (using another single call to
replace) all elements after the gap to the end of the new vector. The value
of gap-end is incremented by the difference in size of the two vectors, as is
data-start if it was greater than or equal to gap-end.

2.5 Decreasing the size of the vector

Again, a new vector with the size of the number of required elements multi-
plied by size-multiplier is first allocated.

Next, we copy (using a single call to replace) all elements before the gap
to the start of the new vector. Then we copy (using another single call to
replace) all elements after the gap to the end of the new vector. The value
of gap-end is decremented by the difference in size of the two vectors, as is
data-start if it was greater than or equal to gap-end.

2.6 Inserting an object

The insertion operation is given a position. The semantics of the insertion
operation require that all elements having a position greater than or equal
to the one given as argument to the insertion operation be “moved to the
right” i.e., that they have their positions incremented by one.

After moving the hot spot to the right place, the value of gap-end is the
index corresponding to the position supplied by the call. It should be noted
that the same index will result from a position of 0 and from a position equal
to the current length of the chain.

But first, we need to make sure the vector is not full. If it is, we call the
function to increase its size.

We place the object to be inserted at the index of gap-start and then
increment gap-start. If this operation gives a gap-start equal to the size
of the vector, then it is set to 0.

10

2.7 Deleting an element

After moving the hot spot to the right place, we need to delete the ele-
ment at gap-end. We do this by replacing it by the fill-element so as to
avoid holding on to it in case it is no longer referenced. Then we increment
gap-end.

Finally, we check whether the size of the vector should be decreased.

2.8 Stack and queue operations

The stack and queue operations are implemented very efficiently. The push
and pop operations simply call the corresponding insert and delete oper-
ations.

The rotate operation deletes from one end of the chain and inserts on the
other.

3 The flexicursor protocol

A cursorchain is like a flexichain, but it also keeps around a bunch of “flexi-
cursors’.

3.1 The concept of a flexicursor

A flexicursor is an object that corresponds to a position between two elements
of the chain. There are two types of flexicursors, left-sticky and right-sticky.
The difference between the two is the way they behave when an object is
inserted at corresponding position. When an object is inserted at the position
corresponding to a left-sticky flexicursor, this cursor will be positioned before
the newly inserted object, i.e., the cursor “sticks” to the element on its left.
When an object is inserted at the position corresponding to a right-sticky
flexicursor, this cursor will be positioned after the newly inserted object, i.e.,
the cursor “sticks” to the element on its right.

Whenever an object is inserted before the position of a cursor, the posi-
tion of the cursor will be incremented. Conversely, whenever an element is

11

deleted from a position below that of a cursor, the position of the cursor is
decremented.

3.2 Mixing flexicursor and flexichain operations

The user can freely mix editing operations from the flexicursor and the
flexichain protocol. When an editing operation from the flexichain pro-
tocol is used on an cursorchain object, the cursors of the cursorchain
object are updated accordingly.

3.3 Performance

There can be a very large number of cursors in a chain without any negative
impact on performance. In particular, a sequence of insert operations is not
affected by the number of cursors of the chain. For insert operations, we
maintain the complexity proportional to the distance between two consecu-
tive positions.

A delete operation takes time proportional to the number of left-sticky cur-
sors to the right of the element to delete plus the number of right-sticky
cursors to the left of it.

The only bad case is thus a delete operation of an element with an unbounded
number of cursors sticking to it.

3.4 Protocol classes and functions

cursorchain [Protocol Class|

This is a subclass of flexichain.

standard-cursorchain [Class|

The standard instantiable subclass of cursorchain.

flexicursor [Protocol Class|

The protocol class for all flexicursors.

chain [Initarg|

12

This initarg determines the cursorchain with which the cursor is associated.

standard-flexicursor [Class|

The standard instantiable subclass of flexicursor.

left-sticky-flexicursor [Class|

The standard instantiable class for left-sticky flexicursors. It is a subclass of
standard-flexicursor.

right-sticky-flexicursor | Class|

The standard instantiable class for right-sticky flexicursors. It is a subclass
of standard-flexicursor.

chain cursor [Generic Function]

Return the underlying cursorchain of the flexicursor given as argument.

clone-cursor cursor |Generic Function|

Create a cursor that is initially at the same location as the one given as
argument.

flexi-position-error [Error Condition)]

This condition is signaled whenever an attempt is made to use position
outside of the range of valid positions.

CUrSOr-pos Cursor |Generic Function)|

Return the position of the cursor.

(setf cursor-pos) position cursor [Generic Function]

Set the position of the cursor. If the new position of the cursor is before
the first position or after the last position of the chain, the condition flexi-
position-error is signaled.

at-beginning-p cursor [Generic Function]

Return true if the cursor is at the beginning of the chain (i.e., if it has a
position of 0). This operation is guaranteed to be executed in O(1) time.

at-beginnin Error Condition
g g

This condition is signaled whenever an attempt is made to move a cursor
beyond the beginning of the chain.

13

at-end-p cursor [Generic Function]

Return true if the cursor is at the end of the chain (i.e., if it has a position
equal to the length of the chain). This operation is guaranteed to be executed
in O(1) time.

at-end [Error Condition)|

This condition is signaled whenever an attempt is made to move a cursor
beyond the end of the chain.

incompatible-object-type [Error Condition|

This condition is signaled whenever an attempt is made to insert an object
of an incompatible type into an chain.

insert cursor object [Generic Function]

Insert an object at the position corresponding to that of the cursor. All
cursors located at positions greater than the one corresponding to the cursor
given as argument, as well as left-sticky cursors (possibly including the one
given as argument) located at the same position as the one given as argument
will have their positions incremented by one. Other cursors are unaffected.

If the type of the object does not match the type accepted by the underlying
chain, the incompatible-object-type condition is signaled.

insert-sequence cursor sequence |Generic Function|

The effect is the same as if each object of the sequence were inserted using
the insert generic function.

delete< cursor &optional (n 1) |Generic Function)|
Delete n elements before the cursor.

delete> cursor &optional (n 1) [Generic Function]

Delete n elements after the cursor. ...

A sequence of insert and delete operations is guaranteed to be efficient if the
positions of successive operations are not too far apart as measured by the
shortest distance of the chain viewed as a circular list. Thus, the beginning
and the end of the chain are considered close.

with-editing-operations cursor &body body [Macro]

14

This macro can be used to group a bunch of editing operations (insert,
delete) into a body. The sequence remains locked for the duration of in-
vocation. Other cursors of the underlying chain are updated only after the
last operation has been completed, thus making it more efficient to use this
macro than to use individual editing operations.

element< cursor [Generic Function|

Return the element immediately before the cursor. If the cursor is at the
beginning, an at-beginning condition will be signaled.

(setf element<) object cursor |Generic Function]

Replace the element immediately before the cursor by the object given as
argument. If the cursor is at the beginning, an at-beginning condition will
be signaled.

element> cursor [Generic Function]

Return the element immediately after the cursor. If the cursor is at the end,
an at-end condition will be signaled.

(setf element>) object cursor |Generic Function|

Replace the element immediately after the cursor by the object given as
argument. If the cursor is at the end, an at-end condition will be signaled.

4 TImplementation of the flexicursor protocol

Cursors are stored as lists of weak references so that they can be recycled
when no longer referenced by client code. A vector that parallels the one
holding elements of the flexichain holds per-element lists of cursors that stick
to that element.

A cursor contains its index in the vector as opposed to its position in the
sequence. This method avoids most updates of cursors at each insert and
delete operation. Most cursors need only be updated whenever the gap
moves. For left-sticky cursors, we store the index of p — 1, where p is the
position of the cursor. For right-sticky cursors, we store p itself.

After a delete operation, cursors with indexes equal to the old value of
gap-end need to be updated. Right-sticky cursors will be attached to the
index corresponding to the new value of gap-end, whereas left-sticky cursors

15

get attached to the position immediately preceding gap-start.
Insert operations do not affect cursors at all.

Mixing of flexicursor and flexichain editing operations is possible thanks
to an internal protocol for moving the gap. The flexicursor code uses
:before, :after, and :around methods on the flexichain editing operations
as well as on the code for moving the gap to update the cursors accord-
ingly. This way, a flexicursor editing operation translates directly to a
flexichain editing operation with no extra code.

16

