Chapter 6

Defining generic functions

The main tool in object-oriented programming using CLOS is that of a
generic function. While the definition of an ordinary function, say using
the defun macro, must have all the code that implements the function in
the body of the defun form, this is not the case with a generic function.
Instead, the implementation of a generic function is determined by one or
more methods that can be textually separated from one another, often in
different files.

When a method is defined, typically using the defmethod macro, the name
supplied is what determines the generic function to which the method be-
longs.

Different methods on one generic function are typically distinguished by the
nature of the requred arguments to which the method is applicable. Usually,
that nature takes the form of a class.

For example, consider again a recursive implementation of the length func-
tion shown in Section 3.3, but this time defined as a generic function as
shown in Code fragment 6.1.

The evaluation of the defgeneric form in Code fragment 6.1 results in the
creation of a generic function named length with no methods on it. Any
attempt to call a generic function with no methods on it will result in an error
being signaled. The generic function length has a single required parameter
named list, and no other parameters.

41



42 CHAPTER 6. DEFINING GENERIC FUNCTIONS

(defgeneric length (list))

(defmethod length ((list null))
0)

(defmethod length ((list cons))
(1+ (length (rest 1list))))

Code fragment 6.1: The length function defined as a generic function.

The first defmethod form in Code fragment 6.1 results in a method being
created and then added to the generic function length. This method is appli-
cable only when the argument given to the generic function is an instance of
the system class named null. This system class has a single instance which
is the object nil in this case used to mean the empty list. We can check the
class of the object nil by typing the following form to the read-eval-print
loop:

CL-USER> (class-of nil)
#<BUILT-IN-CLASS COMMON-LISP:NULL>

The second defmethod form in Code fragment 6.1 results in another method
being created and then added to the generic function length. This method
is applicable only when the argument given to the generic function is an
instance of the system class named cons. This system class is the class of
all cons cells. We can check that cons cells are indeed instances of this class
by typing the following form:

CL-USER> (class-of ’(a)
#<BUILT-IN-CLASS COMMON-LISP:CONS>

Now that we have two methods on the generic function named length, we
can try it out:

CL-USER> (length ’())

0

CL-USER> (length ’(a b c))
3



43

We can also try out our function to see what happens if we give it an argu-
ment that is neither nil nor a cons cell:

CL-USER> (length 234)

What happens then is that an error is signaled, specifically the error con-
dition named no-applicable-method, which is signaled precisely in this
situation, namely that a call was attempted to a generic function, but the
arguments given did not result in any method being applicable.

In the example in Code fragment 6.1 , the two methods are mutually exclu-
sive, i.e., at most one method is applicable to a particular argument given
to the generic function. But it is possible to have more than one method
applicable for a given argument. We illustrate this possibility with a generic
version of the standard function describe as shown in Code fragment 6.2.

(defgeneric describe (object))

(defmethod describe (object)
(format t "This object is an instance of the class named ~s. %"
(class-name (class-of object))))

(defmethod describe ((object list))
(format t "This object is a list.”%"))

(defmethod describe ((object null))
(call-next-method)
(format t "It has no elements.~%"))

(defmethod describe ((object comns))
(call-next-method)
(format t "It has ~d elements.”’" (length object)))

Code fragment 6.2: The describe function defined as a generic function.

In the example in Code fragment 6.2, we have a generic function named
describe with four methods. In the first method, the parameter is not spe-
cialized. An unspecialized parameter is the same as a parameter specialized
to the class named T. Since the class named T is the root of the Common
Lisp class hierarchy, every object is an instance of that class. As a result,
this first method is always applicable, no matter what argument is passed to
the generic function.



44 CHAPTER 6. DEFINING GENERIC FUNCTIONS

The second method in Code fragment 6.2 is specialized to the system class
named list. Recall that this class is a superclass of the classes named null
and cons. In other words, a list is either a cons cell or the object nil. As a
result, this method is applicable when the argument to the generic function
describe is either a cons cell, or the object nil. So in this case, the first and
the second methods are both applicable. However, the second one is more
specific than the first one, because it has more restrictions on the objects
that make it applicable. Therefore, when a list is given as an argument to
this generic function, only second method will be called. but the first one
will not.

The third method in Code fragment 6.2 is specialized to the system class
named null. Recall that the only instance of this class is the object nil,
which is also the object indicating the empty list.. When this generic function
is called with nil as an argument, the first three methods are applicable.
The third method is more specific than the second one, and the second
one is more specific than the first one, so the third method will be called.
However, the first thing that this third method does is to call the function
named call-next-method. This is a local function that is automatically
defined so that it can be used in method bodies. Its purpose is to call the
next most specific method with the same arguments as the current method
was called with. In our case, it therefore calls the second method with the
object nil as an argument. When the call returns, the third method then
prints a message that the list has no elements.

Similarly, the fourth method in Code fragment 6.2 is specialized to the system
class named cons. Every cons cell is an instance of this class. When this
generic function is called with a cons cell as an argument, the first, the
second, and the fourth methods are applicable. The fourth method is more
specific than the second one, and the second one is more specific than the
first one, so the fourth method will be called. However, as with the third
method, the first thing that this fourth method does is to call the function
named call-next-method. In our case, it therefore calls the second method
with the same cons as an argument as the fourth method was called with.
When the call returns, the third method then prints a message with the
number of elements of the list.

We can try out this function at the read-eval-print loop as follows:

CL-USER> (describe 1/2)
This object is an instance of the class named RATIO.



45

NIL

CL-USER> (describe ’())

This object is a list.

It has no elements.

NIL

CL-USER> (describe ’(a b ¢))
This object is a list.

It has 3 elements.

NIL

CL-USER>

The use of call-next-method makes it possible to avoid code duplication by
doing some code factoring. In our case, the code that prints the message
“The object is a list.” should be executed both when the argument to the
generic function is the object nil and when the argument is a cons cell. We
could duplicate this code in the third and in the fourth methods, and just
not define the second method. But such code duplication should be avoided,
because if the code needs to be modified in the future, the person doing the
modification, i.e., the maintainer would have to find all instances of the du-
plicated code, and they are not always close together as in our example. And
if the code in question is not as small as the one in our example, duplicating
it is worse, because the maintainer could make a mistake when modifying
one of the instances of the code. So the use of a method that is applicable
both when the argument is the object nil and when the argument is a cons
cell, and the use of call-next-method is preferable.

In the preceding examples, each generic function had a single parameter.
Generic functions, like ordinary functions, can of course have more than
one parameter, and it can have optional parameters and keyword parame-
ters just like ordinary functions can. But, contrary to methods in common
object-oriented programming languages such as Java or C#, Common Lisp
generic functions can dispatch at run time on more than one argument. In
common object-oriented languages, it is even the case that the syntax has
been chosen so that the argument being dispatched on is distinguished from
other arguments, often by preceding the name of the method as in x.m(. . .)
where x is a class instance being dispatched on. An analogous expression
in Common Lisp would be written m(x, ...) instead. The fact that the
class instance is just another function argument in the case of Common Lisp
suggests two things, namely that the class instance can be any parameter;
not necessarily the first one, and that more than one class instance can be



46 CHAPTER 6. DEFINING GENERIC FUNCTIONS

dispatched on. Both are true as we shall see in the following examples.

Let’s say we represent a set of numbers by a list. We want to write a
convenient-union function that can take either two sets, a number and a
set (in any order), or two numbers, and we want to return the resulting set. In
the first case, the function returns the set that is the normal union of the two
sets. In the other cases, we want to consider the number as being a singleton
set and then return the resulting set. We can define convenient-union as
a generic function as shown in Code fragment 6.3.

(defgeneric convenient-union (setl set2))

(defmethod convenient-union ((setl list) (set2 list))
(union setl set2))

(defmethod convenient-union ((setl number) (set2 list))
(union (list setl) set2))

(defmethod convenient-union ((setl list) (set2 number))
(union setl (list set2)))

(defmethod convenient-union ((setl number) (set2 number))
(union (list setl) (list set2)))

Code fragment 6.3: A generic convenient-union function.

The generic function named convenient-union has two required parameters
named setl and set2. It has four methods, each method specializing to both
required parameters. The first method is applicable when both arguments
are lists. The second method is applicable with the first argument is a
number and the second argument is a list. The third method is applicable
when the first argument is a list and the second argument is a number.
Finally, the fourth method is applicable with both arguments are numbers.
We can test this function at the read-eval-print loop as follows:

CL-USER> (convenient-union ’(3 2 1) ’(2 3 4))
(1234

CL-USER> (convenient-union 1 ’(2 3 4))
(4321

CL-USER> (convenient-union ’(2 3 4) 1)

(4 321)



47

CL-USER> (convenient-union 2 1)
(2 1)

In the preceding examples, a method specializer is always a class, either ex-
plicitly mentioned or the class named t when there is no explicit specializer.
A Common Lisp generic function can also specialize to a particular object.
This case is obtained with the use of a so-called eql specializer. We can
illustrate this case with a version of the standard documentation function
as shown in Code fragment 6.4.

(defgeneric documentation (object type))

(defmethod documentation ((object (eql ’list)) (type (eql ’function)
"This function returns a list of all its arguments.“)

(defmethod documentation ((object (eql ’list)) (type (eql ’type)))
"This class is a superclass of the classes CONS and NULL.")

Code fragment 6.4: A generic generic-documentation function.

Th generic function named documentation has two required parameters. It
has two methods, each method specializes to both parameters, and each
specializer is an eql specializer. The first method is applicable when the
generic function is given the symbol 1ist and the symbol function as argu-
ments. The second method is appliable when the generic function is given
the symbol 1ist and the symbol type as arguments. We can test this generic
function at the read-eval-print loop as follows:

CL-USER> (documentation ’list ’type)

"This class is a superclass of the classes CONS and NULL."
CL-USER> (documentation ’list ’function)

"This function returns a list of all its arguments."

It is of course also possible to have some required parameters with class
specializers and some required parameters with eql specializers, in any order.

))



