Chapter 3

Data Types

This book defines two kinds of data types: abstract data types and concrete
data types.

We use the conventional definition of abstract data type:

Definition 3.1. An abstract data type is a data type defined by the possible
operations on instances of the type, without reference to the way in which these
mstances are represented in the memory of a computer.

As a simple example of an abstract data type, consider a stack. (Chapter 13
offers more detail about this abstract data type.) The operations on a stack
are:

e Test whether the stack is empty.

e Push an object onto the stack.

e Retrieve the top of the stack; that is, given that the stack is not empty,
return the top item on the stack without changing the stack.

e Pop the stack; that is, given that the stack is not empty, remove the top
item on the stack.

In the literature, there are two ways of defining the operations on an abstract
data type, namely imperatively and functionally.

31



32 CHAPTER 3. DATA TYPES

In the imperative definition of an operation, it is important to preserve the
identity of the instance of the type. An operation such as push or pop must
modify the instance of the abstract data type.

In contrast, in the functional definition, no instance of the abstract data type
is ever modified. Operations such as push or pop return a new instance of the
type without modifying the instance passed to them as an argument.

In this book, most of the abstract data types described employ the imperative
definition.

A data type that is not abstract is a concrete data type. Here is the definition
of a concrete data type:

Definition 3.2. A concrete data type is a data type defined by the layout of
an instance of the type in the memory of a computer.

A very simple example of a concrete data type is a cell of a simply linked list,
which is a pair of consecutive words. (For more detail about this idea, see
Chapter 6.) Another example of a concrete data type is an array, which is a
collection of consecutive words in the memory of a computer.

There are data types that can be defined either as concrete or abstract data
types. Take, for example, a simply linked list. It can be described in both ways,
concretely or abstractly. As an abstract data type, a simply linked list would
have the following operations:

o Test whether the list is empty.
e Return the first element of the list, provided that the list is not empty.

e Return the list of elements other than the first, provided that the list is
not empty.

That definition is functional because the last operation returns an instance
different from the type without modifying the instance passed as an argument.

As a concrete type, a list is either empty, and thus represented by the value
NIL, or a cell (or, rather, a pointer to a cell) with two fields. One field, the



33

head, contains the first element of the list. The other field, the tail, contains a
list of the elements other than the first element of the list.

While the first definition does not mention the physical layout of a non-empty
list in memory of a computer, in practice, there is only one reasonable! rep-
resentation, and that reasonable representation corresponds precisely to the
second definition. Consequently, this book always treats this type as concrete.

'In the era of programming languages (such as Fortran) that did not support the possi-
bility of defining structures, it was common to represent all the cells of a list by means of two
arrays in parallel. One array contained the head fields of all the cells, and the other array
contained the tail fields of all the cells. The tail field would contain either the index into the
arrays of the following cell or O for the empty list.



