
Cluster
An assembler with a di�erence

Robert Strandh

2015

ii

Contents

1 Introduction 1

1.1 Purpose . 1

2 X86 instruction database 3

2.1 Interpreting Intel instruction reference pages 3
2.1.1 Modes . 4
2.1.2 Operands . 4
2.1.3 Opcodes . 5
2.1.4 Encoding . 5
2.1.5 Operand-size override 6
2.1.6 Atomic execution . 7
2.1.7 64-bit pre�x . 7

3 Future additions to this library 9

Bibliography 11

iii

iv CONTENTS

Chapter 1

Introduction

1.1 Purpose

Cluster is an assembler [Sal92], but it di�ers from traditional assemblers in
some crucial ways:

� It does not take a source �le as its input. Instead, instructions and labels
are represented as standard objects.1 This way, we avoid the problem of
having to de�ne an input syntax for instructions.

� It does not produce object code as output. Instead, it produces a Common
Lisp vector of unsigned eight-bit bytes.

� There must not be any unresolved references in the program submitted to
Cluster. All references to labels must have a corresponding label de�ned.

Cluster is mainly meant to server as a backend for compilers written in Common
Lisp, but they can be compilers for any language. With Cluster, the compiler
does not need to turn instructions into surface syntax or S-expressions, only to
have the assembler parse that output into some internal representation right

1Recall that �a standard object is an instance of (a subclass of) the class named
standard-object. A standard object is what you obtain when you call make-instance

of a class de�ned with defclass.

1

2 CHAPTER 1. INTRODUCTION

away. By avoiding this pair of unparsing/parsing step, the speed of the com-
pilation process is slightly improved. But the main reason for Cluster to avoid
surface syntax is that it can easily become ambiguous over time, as more types
of instructions and operands need to be expressed. It is much easier to extend
a CLOS class to handle new situations as the arise.

Chapter 2

X86 instruction database

Cluster contains a database with the description of a signi�cant number of
instructions. Each instruction is described by one or more occurrences of calls
to the macro define-instruction described below. A set of calls is recognized
as containing di�erent variations on the same instruction by the fact that the
required parameter mnemonic is the same string for each member of the set.

⇒ define-instruction mnemonic &key modes operands opcodes opcode-extension

encoding lock operand-size-override rex.w [Macro]

2.1 Interpreting Intel instruction reference pages

The instruction reference pages provided by Intel contain complete descriptions
of how each instruction and its variants are encoded. This key to understanding
this description is given in section 3.1 in the Intel manuals. Here, we give a
more direct description of the correspondence between the Intel reference pages
and the arguments that should be supplied to the define-instruction macro.

3

4 CHAPTER 2. X86 INSTRUCTION DATABASE

2.1.1 Modes

The Intel documentation contains two columns mentioning modes. One col-
umn says �64-bit Mode� and the other says �Compat/Leg Mode� (which means
compatibility or legacy mode). This information is re�ected in the keyword ar-
gument :modes to define-instruction. The value of this keyword argument
is a list of one or two elements each of which is either the integer 32 or the
integer 64. When the Intel documentation mentions �Valid� in the column �64-
bit Mode� the list should contain 64. When the column �Compat/Leg Mode�
mentions �Valid�, then the list should contain 32.

2.1.2 Operands

The define-instruction macro has a keyword argument :operands. The
argument should be a list of possible operands. Valid operands are:

� (gpr-a 8). The lower 8 bits of register A, also referred to as AL.

� (gpr-a 16). The 16-bit register AX.

� (gpr-a 32). The 32-bit register EAX.

� (gpr-a 64). The 64-bit register RAX.

� (gpr 8). Any 8-bit register.

� (gpr 16). Any 16-bit register.

� (gpr 32). Any 32-bit register.

� (gpr 64). Any 64-bit register.

� (imm 8). An 8-bit immediate operand.

� (simm 8). An 8-bit immediate operand, sign extended to the size of
the other operand. This operand can occur only as the second of two
operands where the �rst operand has a size that is greater than 8 bits.

� (imm 16). A 16-bit immediate operand.

2.1. INTERPRETING INTEL INSTRUCTION REFERENCE PAGES 5

� (simm 16). A 16-bit immediate operand, sign extended to the size of
the other operand. This operand can occur only as the second of two
operands where the �rst operand has a size that is greater than 16 bits.

� (imm 32). A 32-bit immediate operand.

� (simm 32). A 32-bit immediate operand, sign extended to the size of
the other operand. This operand can occur only as the second of two
operands where the �rst operand has a size that is greater than 32 bits.

� (imm 64). A 64-bit immediate operand.

� (memory 8). An 8-bit memory operand.

� (memory 16). A 16-bit memory operand.

� (memory 32). A 32-bit memory operand.

� (memory 64). A 64-bit memory operand.

2.1.3 Opcodes

The define-instruction macro has a keyword argument :opcodes. This
argument should be a list of unsigned octets. It is preferable to use hexadec-
imal notation for the opcodes. The Intel instruction reference pages contain
a column labeled either �Opcode� or �Opcode/Instruction�. The opcodes are
indicated in that column as a sequence of hexadecimal values, sometimes fol-
lowed by �/n� (where n is a small non-negative integer) or �/r�. The occurrence
of �/r� does not need to be encoded in the define-instruction form.

Sometimes, the list of opcodes is preceded by �REX.W+�. When that is the
case, the :rex.w keyword argument should be provided, with a value of t.

2.1.4 Encoding

The :encoding keyword argument to define-instruction is a list of the
same length as the one supplied to :operands. Each element of the list is
an encoding. For each operand, the encoding indicates how that operand is

6 CHAPTER 2. X86 INSTRUCTION DATABASE

encoded in the binary version of the instruction. Possible values for an encoding
are:

� modrm. This value indicates that the operand is encoded in the �mod� and
�r/m� �elds of the instruction. It should be used when the corresponding
entry in the Intel documentation indicates r/m8, r/m16, r/m32, or r/m64.

� reg. This value indicates that the operand is encoded in the �reg� �eld
of the instruction. It should be used when the corresponding entry in the
Intel documentation indicates r8, r16, r32, or r64.

� imm. This value indicates that the operand is encoded as an immediate
value in the instruction stream. It should be used when the corresponding
operand in the :operands keyword argument mentions (imm 8), (imm
16), (imm 32), or (imm 64).

� label. This value indicates that the corresponding operand is the target
of a control-transfer instruction. It should be used when the correspond-
ing operand in the :operands keyword argument mentions (label 8),
(label 16), (label 32), or (label 64).

� -. This value indicates that the corresponding operand is implicitly de-
�ned by the opcode, which is often the case when general-purpose register
A is one of the operands of the instruction.

� +r. This value use used in some cases when the corresponding operand
is a register. It means that some small integer that indicates a register
is added to the opcode itself. This value should be used when the Intel
documentation has a +rb, +rw, or +rd in the opcode column.

2.1.5 Operand-size override

The keyword argument :operand-size-override to define-instruction is
required to have a true value when the particular operand requires an instruc-
tion pre�x in order for that size operand to be used. In 32-bit and 63-bit mode,
the default operand size is 32-bits, so for instance if the push instruction is to
be given a 16-bit value instead of a 32-bit value in one of these modes, then
the operand-size-override pre�x must be given. For this pre�x to be emitted,
this keyword must be supplied with a true value.

2.1. INTERPRETING INTEL INSTRUCTION REFERENCE PAGES 7

2.1.6 Atomic execution

When the instruction supports atomic execution, the keyword :lock with a
true argument should be given to define-instruction. This value then indi-
cates that the instruction is capable of executing atomically.

2.1.7 64-bit pre�x

In order to access more than 8 registers, Intel instructions require a pre�x called
REX.W. When the Intel documentation mentions this pre�x in the opcode col-
umn, the keyword argument rex.w whould be supplied to define-instruction
with a true value.

8 CHAPTER 2. X86 INSTRUCTION DATABASE

Chapter 3

Future additions to this library

9

10 CHAPTER 3. FUTURE ADDITIONS TO THIS LIBRARY

Bibliography

[Sal92] David Salomon. Assemblers and Loaders. Ellis Horwood, Upper Saddle
River, NJ, USA, 1992.

11

	Introduction
	Purpose

	X86 instruction database
	Interpreting Intel instruction reference pages
	Modes
	Operands
	Opcodes
	Encoding
	Operand-size override
	Atomic execution
	64-bit prefix

	Future additions to this library
	Bibliography

