
A CLOS Protocol for Editor Buffers

Robert Strandh
University of Bordeaux

351, Cours de la Libération
Talence, France

robert.strandh@u-bordeaux1.fr

ABSTRACT
Many applications and libraries contain a data structure for
storing and editing text. Frequently, this data structure is
chosen in a somewhat arbitrary way, without taking into
account typical use cases and their consequence to perfor-
mance. In this paper, we present a data structure in the
form of a CLOS protocol that addresses these issues. In
particular, the protocol is divided into an edit protocol and
an update protocol, designed to be executed at different fre-
quencies. The update protocol is based on the concept of
time stamps allowing multiple views without any need for
observers or similar techniques for informing the views of
changes to the model (i.e., the text buffer).

In addition to the protocol definition, we also present two
different implementations of the definition. The main im-
plementation uses a splay tree of lines, where each line is
represented either as an ordinary vector or as a gap buffer,
depending on whether the line is being edited or not. The
other implementation is very simple and supplied only for
the purpose of testing the main implementation.

CCS Concepts
•Applied computing → Text editing;

Keywords
CLOS, Common Lisp, Text editor

1. INTRODUCTION
Many applications and libraries contain a data structure

for storing and editing text. In a simple input editor, the
content can be a single, relatively short, line of text, whereas
in a complete text editor, texts with thousands of lines must
be supported.

In terms of abstract data types, one can think of an editor
buffer as an editable sequence. The problem of finding a good
data structure for such a data type is made more interesting

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2016 Copyright held by the owner/author(s).

because a data structure with optimal asymptotic worst-
case complexity would be considered as having too much
overhead, both in terms of execution time, and in terms of
memory requirements.

For a text editor with advanced features such as keyboard
macros, it is crucial to distinguish between two different con-
trol loops:

• The innermost loop consists of inserting and deleting
individual items1 in the buffer, and of moving one or
more cursors from one position to an adjacent posi-
tion.

• The outer loop consists of updating the views into the
buffer. Each view is typically an interval of less than
a hundred lines of the buffer.

When the user inserts or deletes individual items, the in-
ner loop performs a single iteration for each iteration of the
outer loop, i.e., the views are updated for each elementary
operation issued by the user.

When operations on multiple items are issued, such as
the insertion or deletion of regions of text, the inner loop
can be executed a large number of iterations for a single
iteration of the outermost loop. While such multiple itera-
tions could be avoided in the case of regions by providing
operations on intervals of items, doing so does not solve the
problem of keyboard macros where a large number of small
editing operations can be issued for a single execution of a
macro. Furthermore, to avoid large amounts of special-case
code, it is preferable that operations on regions be possible
to implement as repeated application of elementary editing
operations.

Roughly speaking, we can say that each iteration of the
outer loop is performed for each character typed by the user.
Given the relatively modest typing speed of even a very fast
typist, as long as an iteration can be accomplished in a few
tens of milliseconds, performance will be acceptable. This is
sufficient time to perform a large number of fairly sophisti-
cated operations.

An iteration of the inner loop, on the other hand, must be
several orders of magnitude faster than an iteration of the
outer loop.

1In a typical editor buffer, the items it contains are individ-
ual characters. Since our protocols and our implementations
are not restricted to characters, we refer to the objects con-
tained in it as “items” rather than characters. An item is
simply an object that occupies a single place in the editable
sequence that the buffer defines.



Gap

Places containing significant data

C l u f f e r

Figure 1: Gap buffer.

In this paper, we propose a data structure that has fairly
low overhead, both in terms of execution time and in terms
of storage requirements. More importantly, our data struc-
ture is defined as a collection of CLOS protocols each one
aimed either at the inner or the outer control loop.

In Section 2, we provide an overview of existing represen-
tations of editor buffers, along with the characteristics of
each representation. We give examples of existing editors
with respect to which representation each one uses.

2. PREVIOUS WORK

2.1 Representing items in a buffer
There are two basic techniques for representing the items

in an editor buffer, namely gap buffer and line oriented.

2.1.1 Gap buffer
A gap buffer can be thought of as a vector holding the

items of the buffer but with some additional free space. In a
typical gap-buffer implementation, a possibly empty prefix
of the buffer content is stored at the beginning of the vector,
and a possibly empty suffix of the content is stored at the
end of the vector, leaving a possibly empty gap between the
prefix and the suffix. This representation is illustrated in
Figure 1.

Buffer items are moved from the end of the prefix to the
beginning of the suffix, and vice-versa, in order to position
the gap where an item is about to be inserted or deleted.
The typical use case for text editing has a very high prob-
ability that two subsequent editing operations will be close
to each other (in terms of the number of items between the
two). Therefore, in most cases, few items will have to be
moved, making this data structure very efficient for editing
operations corresponding to this use case.

Clearly, in the worst case, all buffer items must be moved
for every editing operation. This case happens when editing
operations alternate between the beginning of the buffer and
the end of the buffer. Even so, moving all the items even in
a very large buffer does not represent a serious performance
problem. Furthermore, the pathological case can be largely
avoided by considering the vector holding the items as being
circular (as Flexichain [5] does).

Perhaps the main disadvantage of representing the en-
tire buffer as a single gap buffer is that it is difficult to
associate additional information with specific points in the
buffer. One might, for instance, want to associate some state
of an incremental parser that keeps track of the buffer con-
tent in a more structured form. One possible solution to this

problem is to introduce a cursor2 at the points where it is
desirable to attach information.

Another difficulty with the gap-buffer representation has
to do with updating possibly multiple views. As we discussed
in Section 1, views are updated at the frequency of the event
loop, whereas the manipulation of regions of items and es-
pecially the use of keyboard macros may make the frequency
of editing operations orders of magnitude higher.

2.1.2 Line oriented
Another common way of representing the editor buffer

recognizes that text is usually divided into lines, where each
line typically has a very moderate number of items in it.

In a line-oriented representation, we are dealing with a
two-level sequence. At the outer level, we have a sequence
of lines, and each element of that sequence is a sequence
of items. Every possible combination of representations of
these two sequences is possible. However, since the number
of items in an individual line is usually small, most existing
editors do not go to great lengths to optimize the represen-
tation of individual lines. Furthermore, while the number
of lines in a buffer is typically significantly greater than the
number of items in a line, a typical buffer may contain at
most a few thousand lines, making the representation of the
outer sequence fairly insignificant as well.

Perhaps the main disadvantage of a line-oriented repre-
sentation compared to a gap-buffer representation is that
transferring items to and from a file is slower. With a gap-
buffer representation, the representation in memory and the
representation in a file are very similar, making the transfer
almost trivial. With a line-oriented representation, when a
buffer is created from the content of a file, each line separa-
tor must be handled by the creation of a new representation
of a line.

However, with modern processors, the time to load and
store a buffer is likely to be dominated by the input/output
operations. Furthermore, the number of lines in a typi-
cal buffer is usually very modest. For that reason, a line-
oriented representation does not incur any serious perfor-
mance penalty compared to a gap buffer.

2.2 Updating views
When interactive full-display text editors first started to

appear, the main issue with updating a view was to min-
imize the number of bytes that had to be sent to a CRT
terminal; this issue was due to the relative slowness of the
communication line between the computer and the terminal.
To accomplish this optimization, the redisplay function com-
pared the previous view to the next one, and attempted to
issue terminal-specific editing operations to turn the screen
content into the updated version. Of course, most of the
time, the task consisted of positioning the cursor and insert-
ing a single character.

Today, there is no need to minimize the number of editing
operations on a terminal; it is perfectly feasible to redraw
the entire view for each iteration of the event loop. However,
today we have many more requirements on a text editor. In
the most advanced cases, we would like for an incremental
parser in the view to keep a structured version of the buffer
content, for various purposes, such as syntax highlighting,
language-specific completion and parsing, etc. An incremen-

2What we call a cursor in this paper is called a point in
GNU Emacs terminology.



tal parser may require considerable computing power. It is
therefore of utmost importance that as little work as possi-
ble is done each time around the event loop. Representing
the entire editor buffer as a gap buffer does not lend itself
to such advanced incremental processing.

In fact, most existing editors have very primitive parsers,
mainly because the buffer representation does not necessar-
ily lend itself to efficient incremental parsing.

2.3 Existing editors

2.3.1 GNU Emacs
GNU Emacs [3] [1] uses a gap buffer for the entire buffer

of text, as described in Section 2.1.1.
Creating sophisticated parsers for the content of a buffer

in GNU Emacs is not trivial. For that reason, existing
parsers are typically fairly simple. For example, the parser
for Common Lisp source code is unable to recognize the role
of symbols in different contexts, such as the use of a Com-
mon Lisp symbol as a lexical variable. As a result, syntax
highlighting can become confusing, and indentation is some-
times incorrect.

2.3.2 Multics Emacs
Multics Emacs3 [2] was the first Emacs implementation

written in Lisp, specifically, Multics MacLisp. It therefore
pre-dates GNU Emacs.

Multics Emacs used a doubly linked list of lines, with the
line content itself separate from the linked structure. All
but a single line were said to be closed, and the content of a
closed line was represented as a compact character string.

For the current line, a new MacLisp data type was added
to the Multics MacLisp implementation, and it was called a
rplacable string. Such a string could be seen as an ordinary
MacLisp string, but could also have characters inserted or
deleted through the use of primitives written in assembler
and using special instructions on the GE 645 processor.

2.3.3 Climacs
Like GNU Emacs, Climacs uses a gap buffer for the entire

buffer. It avoids the bad case by using a circular buffer. In
fact, it uses Flexichain [5].

Climacs is able to accommodate fairly sophisticated parsers
for the buffer content. But in order to avoid a complete anal-
ysis of the entire buffer content for each view update, such
parsers must be incremental.

Information about the state of such parsers at various po-
sitions in the buffer must be kept and compared between
view updates. Unfortunately, the gap-buffer representation
does not necessarily lend itself to storing such information.
The workaround used in Climacs is to define a large num-
ber of cursors to hold parser state at various places in the
buffer, but managing these cursors is a non-trivial task.

2.3.4 Others
Hemlock uses a doubly linked list of lines. Each line is

a struct containing a reference to the previous line and a
reference to the next line. No more than one line is open at
any point in time, and then the content is stored separately
in a gap buffer. The gap-buffer data is contained in special
variables and not encapsulated in a class or a struct.

3The description in this section is a summary of the infor-
mation found here: http://www.multicians.org/mepap.html

Update

Edit

Buffer

Line

item−count

line−count

split−line

...

insert−item

forward−item

...

update

Figure 2: External protocols.

Goatee was written to be the input editor of McCLIM.
Like Hemlock, it uses a doubly linked list of lines, with the
difference that the line content itself is separate from the
doubly linked structure. Lines are represented by a gap
buffer. The gap buffer is encapsulated in a library called
Flexivector, which was later extended to become the Flexi-
chain library.

3. OUR TECHNIQUE

3.1 Protocols
Recall from Section 1 the existence of two nested control

loops, the inner control loops in which each iteration is ex-
ecuting a single edit operation, and the outer control loop
for the purpose of updating views.

The inner control loop is catered to by two different proto-
cols; one containing operations on individual lines of items
and one containing operations at the buffer level, concerning
mainly the creation and deletion of lines. While we supply
reasonable implementations of both these protocols, we also
allow for sophisticated clients to substitute specific imple-
mentations of each one.

The outer control loop is catered to by the update proto-
col. This protocol is based on the concept of time stamps.
In order to request an update, client code supplies the time
stamp of the previous similar request in addition to four dif-
ferent functions (sync, skip, modify, and create). These
functions can be thought of as representing editing opera-
tions on the lines of the buffer. Our protocol implementation
calls these functions in an order that will update the buffer
content from its previous to its current state. The imple-
mentations of these functions are supplied by client code
according to its own representation of the buffer content.

Figure 2 illustrates the relationship between these proto-
cols.

The protocols illustrated in Figure 2 are related to one
another by the protocol classes that they operate on. The
buffer-edit protocol operates on instances of the protocol
class named buffer. The line-edit protocol operates on in-
stances of the two protocol classes line and cursor. These
protocols are tied together by an internal protocol class
named dock. Figure 3 illustrates the participation of these



buffer

dock

line

cursor

Buffer edit

Line edit

Internal

Figure 3: Participation of classes in protocols.

protocol classes in the different protocols, omitting the up-
date protocol.

The internal protocol contains generic functions for which
methods must be created that specialize to different im-
plementations of the buffer-edit and the line-edit protocols.
Client code using the library is not concerned with the ex-
istence of the internal protocol.

3.2 Supplied implementations
For the line protocol, we supply two different implemen-

tations, the standard line implementation and the simple
line implementation. Similarly, for the buffer protocol, we
supply two different implementations, the standard buffer
implementation and the simple buffer implementation.

3.2.1 Standard line implementation
The standard line implementation is the one that a typical

application would always use, unless an application-specific
line implementation is desired.

To appreciate the design of the standard line, we need
to distinguish between two different categories of operations
on a line. We call these categories editing operations and
content queries, respectively. An editing operation is one in
which the content of the line is modified in some way, and is
the result of the interaction of a user typing text, inserting
or removing a region of text, or executing a keyboard macro
that results in one or more editing operations. A content
query happens as a result of an event loop or a command
loop updating one or more views of the content.

A crucial observation related to these categories is that
content queries are the result of events (typically, the user
typing text or executing commands). The frequency of such
events is fairly low, giving us ample time to satisfy such a
query. Editing operations, on the other hand, can be ar-
bitrarily more frequent, simply because a single keystroke
on the part of the user can trigger a very large number of
editing operations.4

This implementation supplies two different representations
of the line that we call open and closed respectively. A line
is open if the last operation on it was an editing operation.

4It is of course possible to supply aggregate operations that
alleviate the problem of frequent editing operations. In par-
ticular, it is possible to supply operations that insert a se-
quence of items, and that delete a region of items. However,
such operations complicate the implementations of the pro-
tocol. Worse, there are still cases where many simple editing
operations need to be executed, in particular as a result of
executing keyboard macros.

It is closed if the last operation was a content query in the
form of a call to the generic function items. Accordingly,
a line is changed from being open to being closed whenever
there is a content query, and from closed to open when there
is a call to an editing operation.

A closed line is represented as a Common Lisp simple
vector. An open line is represented as a gap buffer. (See
Section 2.) The protocol specifically does not allow for the
caller of a content query to modify the vector returned by
the query. This restriction allows us to return the same
vector each time there is a content query without any inter-
vening editing operation, thus making it efficient for views
to query closed lines repeatedly. Similarly, repeated editing
operations maintain the line open, making such a sequence
of operations efficient as well.

Clearly, the typical use case when a user issues keystrokes,
each one resulting in a simple editing operation such as in-
serting or deleting an item, followed by an update of one or
more views of the buffer content is not terribly efficient. The
reason for this inefficiency is that this use case results in a
line being alternately opened (as a result of the editing op-
eration) and closed (as a result of the view update) for each
keystroke. However, this use case does not have to be very
efficient, again because the costly operations are invoked at
the frequency of the event loop. The use case for which the
standard line design was optimized is the one where a single
keystroke results in several simple editing operations, i.e.,
the exact situation in which performance is crucial.

3.2.2 Simple line implementation
We supply a second implementation, called the simple

line, for the line editing protocol. The main purpose of this
implementation is to serve as a reference for random tests.
The idea here is that the implementation of the simple line
is trivial, so that the correctness of the implementation is
mostly obvious from inspecting the code, and in any case,
it is unlikely that a defect in the simple line and another
defect in the standard line will result in the same external
behavior on a large body of randomly generated operations.

In addition to serving as a reference implementation for
testing the standard line, this implementation can also serve
as a reference for programmers who would like to create their
own implementation of the line editing protocol.

The simple line implementation provides a single line ab-
straction, implemented as a Common Lisp simple vector.
Each editing operation is implemented as reallocation of a
new vector followed by calls to replace to copy items from
the original line content to the one resulting from the edit-
ing operation. Clearly, this technique is very inefficient. For
that reason, it is not recommended to use the simple imple-
mentation in client code.

3.2.3 Standard buffer implementation
The main performance challenge for the buffer implemen-

tation is to obtain acceptable performance in the presence
of multiple views (into a single buffer) that are far apart,
and that both issue editing operations in each interaction.
The typical scenario would be a user having two views, one
close to the beginning of the buffer and one close to the end
of the buffer, while executing a keyboard macro that deletes
from one of the views and inserts into the other.

This time, the performance challenge has to do with the
update protocol rather than with the edit protocols. A naive



buffer implementation would have to iterate over all the lines
each time the update protocol is invoked.

To obtain reasonable performance in the presence of mul-
tiple views, the standard buffer implementation uses a splay
tree [4] with a node for each line in the buffer. A splay tree
is a self-adjusting binary tree, in that nodes that are fre-
quently used migrate close to the root of the tree. Although
the typical use of splay trees and other tree types is to serve
as implementations of dictionaries, an often overlooked fact
is that all trees can be used to implement editable sequences;
that is how we use the splay tree here.

In addition to containing a reference to the associated
line, each node in the splay tree contains time stamps corre-
sponding to when the line was created and last modified. In
addition, each node also contains summary information for
the entire subtree rooted at this node. This summary infor-
mation is what allows us to skip entire subtrees when a view
requests update information and no node in the subtree has
been modified since the last update request.

Finally, each node contains both a line count and an item
count for the entire subtree, so that the offset of a particular
line or a particular item can be computed efficiently, at least
for nodes that are close to the root of the tree.

3.2.4 Simple buffer implementation
As with the implementations of the line-edit protocol, we

supply a second implementation, called the simple buffer,
for the buffer editing protocol as well. Again, the main pur-
pose of this implementation is to serve as a reference for
random tests. As with the simple line implementation, the
implementation of the simple buffer is trivial, so that the
correctness of the implementation is mostly obvious from
inspecting the code.

The simple buffer implementation represents the buffer as
a Common Lisp vector of nodes, where each node contains
a line and time stamps indicating when a line was created
and last modified.

4. BENEFITS OF OUR TECHNIQUE
There are several advantages to our technique compared

to other existing solutions.
First, most techniques expose a more concrete represen-

tation of the buffer to client code, such as a doubly linked
list of lines. Our technique is defined in terms of an abstract
CLOS protocol that can have several potential implementa-
tions.

Furthermore, our update protocol based on time stamps
provides an elegant solution to the problem of updating mul-
tiple views at different times and with different frequencies.
In addition, the standard buffer implementation provided
by our library provides an efficient implementation of the
update protocol.

Our technique can be customized by the fact that the
buffer editing protocol and the line editing protocol are in-
dependent. Client code with specific needs can therefore
replace the implementation of one or the other or both ac-
cording to its requirements. Thanks to the existence of the
CLOS protocol, such customization can be done gradually,
starting with the supplied implementations and replacing
them as requirements change.

The standard line implementation supplied makes it pos-
sible to obtain reasonable performance for aggregate editing
operations even when these operations are implemented as

iterative calls to elementary editing operations. This quality
makes it possible for client code to be simpler, for obvious
benefits.

Finally, our technique is not specific to the abstractions
of any particular existing editor, making our library useful
in a variety of potential clients.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have defined a CLOS protocol for ma-

nipulating text editor buffers. The protocol is divided into
several sub-protocols, so that sophisticated clients can pro-
vide specific implementations according to the requirements
of the application.

The update sub-protocol was designed to be used by an
arbitrary number of views. The implementation we supply
is fast so that this protocol can be invoked for events such
as keystrokes, exposures, and changes of window geometry.

In the remainder of this section, we outline future plans
for the library.

5.1 Layer for Emacs compatibility
We plan to define a protocol layer on top of the edit pro-

tocols with operations that have the same semantics as the
buffer protocol of GNU Emacs. Mainly, this work involves
hiding the existence of individual lines, and treating the sep-
aration between lines as if it contained a newline character.

When a cursor is moved forward beyond the end of a line,
or backward beyond the beginning of a line, this compati-
bility layer will have to detach the cursor from the line that
it is currently attached to and re-attach it to the following
or preceding line as appropriate.

Other minor operations need to be adapted, such as com-
puting the item count of the entire buffer. This calculation
will have to consider the separation of each pair of lines to
contribute another item to the item count of the buffer.

5.2 Incremental Common Lisp parser
One of the essential reasons for the present work is to

serve as an intermediate step towards the creation of a fully
featured editor for Common Lisp code, entirely written in
Common Lisp. Such an editor must be able to analyze the
buffer content at least at the same frequency as that of the
update of a view.

To that end, we plan to create a framework that allows the
incremental parsing of the buffer content as Common Lisp
code. Such a framework should allow for features such as
syntax highlighting and automatic code indentation. Prefer-
ably, it should have a fairly accurate representation of the
code such that the role of various code fragments can be
determined. For example, it would be preferable to distin-
guish between a symbol in the common-lisp package when
it is used to name a Common Lisp function and when (as
the Common Lisp standard allows) it is used as a lexical
variable with no relation to the standard function.

The first step of this incremental parser framework will
be to adapt an implementation of the Common Lisp read

function so that it can be used for incremental parsing, and
so that the interpretation of tokens can take into account
the specific situation of an editor buffer.

To take into account the different roles of symbols, the
framework needs to include a code walker so that the occur-
rence of macro calls will not hamper the analysis.



5.3 Thread safety
The current implementation assumes that access is single-

threaded. We plan to make multi-threaded access possible
and safe. Implementing thread safety is not particularly
difficult in itself. The interesting part would be to deter-
mine whether it is possible to achieve multi-threaded access
without using a global lock for the entire buffer for every
elementary operation.

Since each line is a separate object, it would appear that
locking a single line would be sufficient for most operations
such as inserting or deleting a single item. However, the cur-
rent implementation also keeps the item count of the entire
buffer up to date for each such operation.

However, the item count for the entire buffer is typically
asked for only at the frequency of the update protocol, for
instance, in order to display this information to the end user.
Other situations exist when this information is needed, for
example when an operation to go to a particular item offset
is issued. But such operations are relatively rare.

This analysis suggests that it may be possible to update
the global item count lazily. Each line would be allowed to
have a different item count from what is currently stored in
the buffer data structure, and the buffer itself would main-
tain a set of lines with modified item counts. When the
global item count of the buffer is needed, this set is first
processed so that the global item count is up to date.

6. ACKNOWLEDGMENTS
We would like to thank Daniel Kochmański, Bart Botta,

and Matthew Alan Martin for providing valuable feedback
on early versions of this paper.

APPENDIX
A. PROTOCOL

In this section, we describe the protocols that are imple-
mented by our library.

For each class, generic function, and condition type, we
include only a brief description. In particular, we do not
include a complete description of the exceptional situations
possible. For a complete description, see the Documentation

subdirectory in the repository at GitHub.5

A.1 Classes
buffer [Protocol Class]

This class is the base class of all buffers. Each different buffer
implementation defines specific implementation classes to be
instantiated by client code.
line [Protocol Class]

This class is the base class of all lines. Each different line
implementation defines specific implementation classes to be
instantiated by client code.
cursor [Protocol Class]

This class is the base class of all cursors. Each different line
implementation defines specific implementation classes to be
instantiated by client code.

A.2 Generic functions
item-count entity [GF ]

If entity is a line, then return the number of items in that
line. If entity is a cursor, return the number of items in the

5https://github.com/robert-strandh/Cluffer

line in which cursor is located. If entity is a buffer, then
return the number of items in the buffer.
item-at-position line position [GF ]

Return the item located at position in line.
insert-item-at-position line item position [GF ]

Insert item into line at position.
After this operation completes, what happens to cursors

located at position before the operation depends on the class
of the cursor and of line.
delete-item-at-position line position [GF ]

Delete the item at position in line.
cursor-position cursor [GF ]

Return the position of cursor in the line to which it is at-
tached.
(setf cursor-position) new-position cursor [GF ]

Set the position of cursor to new-position in the line to which
cursor is attached.
insert-item cursor item [GF ]

Calling this function is equivalent to calling insert-item-

at-position with the line to which cursor is attached, item,
and the position of cursor.
delete-item cursor [GF ]

Delete the item immediately after cursor.
Calling this function is equivalent to calling delete-item-

at-position with the line to which cursor is attached and
the position of cursor.
erase-item cursor [GF ]

Delete the item immediately before cursor.
Calling this function is equivalent to calling delete-item-

at-position with the line to which cursor is attached and
the position of cursor minus one.
cursor-attached-p cursor [GF ]

Return true if and only if cursor is currently attached to
some line.
detach-cursor cursor [GF ]

Detach cursor from the line to which it is attached.
attach-cursor cursor line &optional (position 0) [GF ]

Attach cursor to line at position.
beginning-of-line-p cursor [GF ]

Return true if and only if cursor is located at the beginning
of the line to which cursor is attached.
end-of-line-p cursor [GF ]

Return true if and only if cursor is located at the end of the
line to which cursor is attached.
beginning-of-line cursor [GF ]

Position cursor at the very beginning of the line to which it
is attached.
end-of-line cursor [GF ]

Position cursor at the very end of the line to which it is
attached.
forward-item cursor [GF ]

Move cursor forward one position.
backward-item cursor [GF ]

Move cursor backward one position.
update buffer time sync skip modify create [GF ]

This generic function is the essence of the update protocol.
The time argument is a time stamp that can be nil (mean-
ing the creation time of the buffer) or a value returned by
previous invocations of update. The arguments sync, skip,
modify, and create, are functions. The sync function is called
with the first unmodified line following a sequence of mod-
ified lines. The skip function is called with a number indi-



cating the number of lines that have not been altered. The
modify function is called with a line that has been modi-
fied. The create function is called with a line that has been
created.

B. REFERENCES
[1] C. A. Finseth. The Craft of Text Editing – Emacs for

the Modern World. Springer-Verlag, 1991.

[2] B. S. Greenberg. Multics emacs (prose and cons): A
commercial text-processing system in lisp. In
Proceedings of the 1980 ACM Conference on LISP and
Functional Programming, LFP ’80, pages 6–12, New
York, NY, USA, 1980. ACM.

[3] B. Lewis, D. LaLiberte, and R. Stallman. GNU Emacs
Lisp Reference Manual. Free Software Foundation,
Boston, MA, USA, 2014.

[4] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, July 1985.

[5] R. Strandh, M. Villeneuve, and T. Moore. Flexichain:
An editable sequence and its gap-buffer
implementation. In Proceedings of the Lisp and Scheme
Workshop, 2004.


