
Clu�er
A library for text-editor bu�ers.

Robert Strandh

2015

ii

Contents

1 Introduction 1

2 External protocols 5

2.1 Package . 5

2.2 Conditions . 5

2.3 Line edit protocol . 7

2.3.1 Protocol classes . 7

2.3.2 Operations on lines and cursors 7

2.4 Bu�er edit protocol . 15

2.4.1 Protocol classes . 15

2.4.2 Operations on bu�ers 16

2.5 Bu�er update protocol . 18

3 Supplied implementations 21

3.1 Standard line . 21

3.1.1 Characteristics . 21

3.1.2 Package . 22

3.1.3 Classes . 22

3.2 Simple line . 23

3.2.1 Characteristics . 23

3.2.2 Package . 24

3.2.3 Classes . 24

3.3 Standard bu�er . 24

3.3.1 Characteristics . 24

3.3.2 Package . 25

3.3.3 Classes . 25

3.4 Simple bu�er . 25

iii

iv CONTENTS

3.4.1 Characteristics . 25
3.4.2 Package . 25
3.4.3 Classes . 26

4 Writing new implementations 27

4.1 Introduction . 27
4.2 Writing new line implementations 27

4.2.1 Package . 27
4.2.2 Classes . 27
4.2.3 Methods . 28

4.3 Writing new bu�er implementations 31
4.3.1 Package . 31
4.3.2 Classes . 31
4.3.3 Methods . 31

Bibliography 33

Chapter 1

Introduction

Clu�er is a library for representing the bu�er of a text editor. As such, it de�nes
a set of CLOS protocols for client code to interact with the bu�er contents in
various ways, and it supplies di�erent implementations of those protocols for
di�erent purposes.

The bu�er protocols have been chosen so that they can �t a variety of editors.
As a consequence, they are not particularly Emacs-centric. For example, in
Emacs, a newline character is just another character, so that moving past it
using the forward-char command changes the line in which point is located,
and using the delete-char command when point is to the left of a newline
character joins the line to the next one.

In contrast, the bu�er protocols documented here are line oriented and there is
no newline character; only a sequence of lines. At some level, it is of course de-
sirable to have Emacs-compatible commands, but these commands are written
separately, using this bu�er protocol to accomplish the e�ects. For example,
the Emacs-compatible forward-item command checks whether it is at the end
of a line, and if so, detaches the cursor from that line and attaches it to the next
one. Similarly, the Emacs compatible delete-item command calls join-line
in the bu�er protocol to obtain the desired e�ect when it is at the end of a line.

By writing the editor commands in two levels like this, we hope it will be easier
to use the bu�er protocols to write emulators for other editors, such as VIM.

1

2 CHAPTER 1. INTRODUCTION

The bu�er participates in two di�erent bu�er protocols:

1. The edit protocol, used by client editing and cursor-motion operations.

2. The update protocol, used by redisplay operations to determine what
items are contained in the bu�er.

The operations in the edit protocol were designed to be fast (typically around
10 µs) so that it is practical to use these operations in a loop, say to insert or
delete a region, or to accomplish several operations inside a keyboard macro.
The exceptions are the operations split-line and join-line that take time
proportional to the number of items in the second line.1

The operations in the update protocol were designed to be called at the fre-
quency of the event loop of an application, typically once for each character
typed, but also when a window is resized or scrolled (in which case, these
operations are very fast since no modi�cations to the bu�er have occurred).

The bu�er edit protocols expose two levels of abstraction to client code:

1. The bu�er level represents the sequence of lines independently of how
the individual lines are represented.

2. The line level represents individual lines.

As mentioned above, the bu�er protocols do not pretend to manage any equiv-
alence between line breaks and some sequence of characters. It is up to client
code to model such an equivalence if desired. As a consequence, the bu�er pro-
tocols do not allow for a cursor at the beginning of a line to move backward or a
cursor at the end of a line to move forward. An attempt at doing so will result
in an error being signaled. If client code wants to impose a model where the
line break corresponds to (say) the newline character, then it must explicitly
detach and reattach the cursor to a di�erent line in these cases. It can manage
that in two di�erent ways: either by explicitly testing for beginning-of-line
or end-of-line before calling the equivalent bu�er function, or by handling
the error that results from the attempt.

1We may improve on this performance in the future.

3

The bu�er also does not interpret the meaning of any of items contained in it.
For instance, whether an item is to be considered part of a word or not, is not
decided at the bu�er level, but at the level of the syntax. As a consequence, the
bu�er protocol does not o�er any functions that require such interpretation,
such as forward-word, end-of-paragraph, etc.

4 CHAPTER 1. INTRODUCTION

Chapter 2

External protocols

2.1 Package

All symbols in the external protocol are in the package named cluffer. We
recommend against client code using this package in the sense of the :use

option to defpackage or in the sense of calling use-package.

The reason for this recommendation is that we can not guarantee that future
additions to this library will not de�ne external symbols that con�ict with
symbols in the common-lisp package.

Instead, we recommend that client code use explicit package pre�xes, which in
addition will make the origin of the symbol obvious from the source code.

If, for some reason, it is not desirable to use explicit package pre�xes, we suggest
selectively importing the desired symbols.

2.2 Conditions

Clu�er de�nes a number of conditions that are signaled when Clu�er is unable
to ful�ll the contract stipulated by the protocol function being used.

⇒ cluffer:cluffer-error [Condition]

5

6 CHAPTER 2. EXTERNAL PROTOCOLS

This condition type is the base of all error conditions signaled by Clu�er. Client
code that wishes to handle all error conditions signaled by Clu�er may use this
condition in its condition handlers.

⇒ cluffer:end-of-line [Condition]

This condition is signaled when an attempt is made to use a position that is too
large, either by moving a cursor there, or by attempting to access an item in
such a position. Notice that in some cases, "too large" means "strictly greater
than the number of items in a line", and sometimes it means "greater than or
equal to the number of items in a line". For example, it is perfectly acceptable
to move a cursor to a position that is equal to the number of items in a line,
but it is not acceptable to attempt to access an item in a line at that position.

⇒ cluffer:beginning-of-buffer [Condition]

⇒ cluffer:end-of-buffer [Condition]

⇒ cluffer:cursor-attached [Condition]

This condition is signaled when an attempt is made to use a cursor in an
operation that requires that cursor to be detached, but the cursor used in the
operation is attached to a line.

⇒ cluffer:cursor-detached [Condition]

This condition is signaled when an attempt is made to use a cursor in an
operation that requires that cursor to be attached, but the cursor used in the
operation is not attached to any line.

⇒ cluffer:cursors-are-not-comparable [Condition]

This condition is signaled when an attempt is made to compare two cursors
which are each attached to a line but the lines do not belong to the same bu�er.
The readers cursor1 and cursor2 can be used to obtain the o�ending cursor
objects.

⇒ cluffer:line-detached [Condition]

This condition is signaled when an attempt is made to use a line in an operation
that requires the line to be attached to a bu�er, but the line used in the
operation is not attached to a bu�er. An example of such an operation would
be to attempt to get the line number of the line, given that the line number of

2.3. LINE EDIT PROTOCOL 7

a line is determined by the bu�er to which the line is attached.

⇒ cluffer:object-must-be-line [Condition]

This condition is signaled by protocol generic functions that take a line object
as an argument, but something other than a line object was given.

⇒ cluffer:object-must-be-buffer [Condition]

This condition is signaled by protocol generic functions that take a bu�er object
as an argument, but something other than a bu�er object was given.

2.3 Line edit protocol

2.3.1 Protocol classes

⇒ line [Class]

This class is the base class for all lines. It should not itself be instantiated. In-
stead, Clu�er contains two di�erent modules each supplying a di�erent subclass
of line that can be instantiated.

⇒ cursor [Class]

This is the base class for all cursors.

⇒ :line [Initarg]

The class cursor accepts this initarg which is the line to which the new cursor
is to be attached.

⇒ :cursor-position [Initarg]

The class cursor accepts this initarg which is the position to which the new
cursor is initialized on the attached line.

2.3.2 Operations on lines and cursors

⇒ cursor-position cursor [Generic Function]

Return the position of cursor in the line to which it is attached.

8 CHAPTER 2. EXTERNAL PROTOCOLS

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

⇒ (setf cursor-position) new-position cursor [Generic Function]

Set the position of cursor to new-position in the line to which cursor is at-
tached.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

If new-position is negative, then a condition of type beginning-of-line is
signaled. If new-position is strictly greater than the number of items in the
line to which cursor is attached (See the generic function item-count), then
a condition of type end-of-line is signaled.

⇒ beginning-of-line-p cursor [Generic Function]

Return true if and only if cursor is located at the beginning of the line to which
cursor is attached.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

Calling this function is equivalent to calling the function cursor-position

with cursor as argument and comparing the return value to 0. However, this
function might be implemented di�erently for reasons of performance.

⇒ end-of-line-p cursor [Generic Function]

Return true if and only if cursor is located at the end of the line to which
cursor is attached.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

Calling this function is equivalent to calling the function cursor-position with
cursor as argument and comparing the return value to the number of items
in the line to which cursor is attached (See the generic function item-count).
However, this function might be implemented di�erently for reasons of perfor-
mance.

⇒ beginning-of-line cursor [Generic Function]

2.3. LINE EDIT PROTOCOL 9

Position cursor at the very beginning of the line to which it is attached.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

Calling this function is equivalent to calling the function (setf cursor-position)

with 0 and cursor as arguments. However, this function might be implemented
di�erently for reasons of performance.

⇒ end-of-line cursor [Generic Function]

Position cursor at the very end of the line to which it is attached.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

Calling this function is equivalent to calling the function (setf cursor-position)

with the number of items in the line to which cursor is attached (See generic
function item-count) and cursor as arguments. However, this function might
be implemented di�erently for reasons of performance.

⇒ forward-item cursor [Generic Function]

Move cursor forward one position.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

Calling this function is equivalent to incrementing the cursor-position of
cursor. However, this function might be implemented di�erently for reasons of
performance.

⇒ backward-item cursor [Generic Function]

Move cursor backward one position.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

Calling this function is equivalent to decrementing the cursor-position of
cursor. However, this function might be implemented di�erently for reasons of
performance.

⇒ item-at-position line position [Generic Function]

10 CHAPTER 2. EXTERNAL PROTOCOLS

Return the item located at position in line.

If position is less than zero, a condition of type beginning-of-line is signaled.
If position is greater than or equal to the number of items in line (See the def-
inition of the generic function item-count.), a condition of type end-of-line
is signaled.

⇒ item-after-cursor cursor [Generic Function]

Return the item located immediately after cursor.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

Calling this function is equivalent to calling item-at-position with the line
to which the cursor is attached (see generic function line) and the position of
cursor (see generic function cursor-position). However, this function might
be implemented di�erently for reasons of performance.

⇒ item-before-cursor cursor [Generic Function]

Return the item located immediately before cursor.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

Calling this function is equivalent to calling item-at-position with the line
to which the cursor is attached (see generic function line) and the position
of cursor (see generic function cursor-position) minus one. However, this
function might be implemented di�erently for reasons of performance.

⇒ insert-item-at-position line item position [Generic Function]

Insert item into line at position.

If position is less than zero, a condition of type beginning-of-line is signaled.
If position is greater than the number of items in line (See the de�nition of the
generic function item-count.), a condition of type end-of-line is signaled.

After this operation completes, what happens to cursors located at position

before the operation depends on the class of the cursor and of line. The
standard-line implementation provides two kinds of cursors, namely left-

sticky cursors and right-sticky cursors. For such an implementation, after this

2.3. LINE EDIT PROTOCOL 11

operation completes, any left-sticky cursor located at position will be located
before item, and any right-sticky cursor located position will be located after
item.

⇒ delete-item-at-position line position [Generic Function]

Delete the item at position in line.

If position is less than zero, a condition of type beginning-of-line is signaled.
If position is greater than or equal to the number of items in line (See the def-
inition of the generic function item-count.), a condition of type end-of-line
is signaled.

⇒ insert-item cursor item [Generic Function]

Calling this function is equivalent to calling insert-item-at-position with
the line to which cursor is attached, item, and the position of cursor. However,
this function might be implemented di�erently for reasons of performance.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

⇒ delete-item cursor [Generic Function]

Delete the item immediately after cursor.

Calling this function is equivalent to calling delete-item-at-position with
the line to which cursor is attached and the position of cursor. However, this
function might be implemented di�erently for reasons of performance.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

⇒ erase-item cursor [Generic Function]

Delete the item immediately before cursor.

Calling this function is equivalent to calling delete-item-at-position with
the line to which cursor is attached and the position of cursor minus one.
However, this function might be implemented di�erently for reasons of perfor-
mance.

If cursor is not currently attached to a line, a condition of type cursor-detached

12 CHAPTER 2. EXTERNAL PROTOCOLS

is signaled.

⇒ cursor-attached-p cursor [Generic Function]

Return true if and only if cursor is currently attached to some line.

⇒ detach-cursor cursor [Generic Function]

Detach cursor from the line to which it is attached.

If cursor is already detached, a condition of type cursor-detached is signaled.

⇒ attach-cursor cursor line &optional (position 0) [Generic Function]

Attach cursor to line at position. If position is supplied and it is greater than
the number of items in line, the error condition end-of-line is signaled. If
cursor is already attached to a line, the error condition cursor-attached is
signaled.

⇒ item-count entity [Generic Function]

If entity is a line, then return the number of items in that line. If entity is a
cursor, return the number of items in the line in which cursor is located.

If entity is a cursor that is not currently attached to a line, a condition of type
cursor-detached is signaled.

Note: the argument entity can also be a bu�er, in which case the total number
of items is returned. (See Section 2.4.)

⇒ line cursor [Generic Function]

Return the line in which cursor is located.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

⇒ buffer entity [Generic Function]

Return the bu�er of entity. If entity is a line, then return the bu�er to which
the line is attached. If entity is a cursor, then return the bu�er of the line to
which the cursor is attached.

If entity is a cursor that is not currently attached to a line, a condition of type
cursor-detached is signaled.

2.3. LINE EDIT PROTOCOL 13

If entity is a line that is not currently attached to a bu�er, a condition of type
line-detached is signaled.

Comparing Cursors

Cursors which are attached to lines which belong to the same bu�er can be
lexicographically ordered based on their line numbers and within-line positions.
The following functions allow comparing cursor objects according to this order:

⇒ cursor< cursor &rest more-cursors [Function]

Return true if for each adjacent pair of cursors (c1, c2) in the sequence of cursors
consisting of cursor followed by more-cursors, c1 is positioned before c2 in the
bu�er. This function calls the generic function cursor</2 for each such pair to
check whether the property holds. As a consequence, return true if only cursor

is supplied.

If any of the cursors is not currently attached to a line, a condition of type
cursor-detached is signaled. Unless all cursors are attached to lines which
belong to the same bu�er, a condition of type cursors-are-not-comparable

is signaled.

⇒ cursor<= cursor &rest more-cursors [Function]

Return true if for each adjacent pair of cursors (c1, c2) in the sequence of cursors
consisting of cursor followed by more-cursors, c1 is positioned before c2 or at
the same position as c2 in the bu�er. This function calls the generic function
cursor<=/2 for each such pair to check whether the property holds. As a
consequence, return true if only cursor is supplied.

If any of the cursors is not currently attached to a line, a condition of type
cursor-detached is signaled. Unless all cursors are attached to lines which
belong to the same bu�er, a condition of type cursors-are-not-comparable

is signaled.

⇒ cursor= cursor &rest more-cursors [Function]

Return true if all cursors in the sequence of cursors consisting of cursor followed
bymore-cursors are positioned at the same position in the bu�er. This function
calls the generic function cursor=/2 for pairs of cursors to check whether the

14 CHAPTER 2. EXTERNAL PROTOCOLS

property holds. As a consequence, return true if only cursor is supplied.

If any of the cursors is not currently attached to a line, a condition of type
cursor-detached is signaled. Unless all cursors are attached to lines which
belong to the same bu�er, a condition of type cursors-are-not-comparable

is signaled.

⇒ cursor/= cursor &rest more-cursors [Function]

Return true if no two cursors in the sequence of cursors consisting of cursor
followed by more-cursors are positioned at the same position in the bu�er.
This function calls the generic function cursor=/2 for all pairs of cursors to
check whether the property is violated. As a consequence, return true if only
cursor is supplied.

If any of the cursors is not currently attached to a line, a condition of type
cursor-detached is signaled. Unless all cursors are attached to lines which
belong to the same bu�er, a condition of type cursors-are-not-comparable

is signaled.

⇒ cursor>= cursor &rest more-cursors [Function]

Return true if for each adjacent pair of cursors (c1, c2) in the sequence of cursors
consisting of cursor followed by more-cursors, c1 is positioned after or at the
same position as c2 in the bu�er. This function calls the generic function
cursor</2 for each such pair to check whether the property is violated. As a
consequence, return true if only cursor is supplied.

If any of the cursors is not currently attached to a line, a condition of type
cursor-detached is signaled. Unless all cursors are attached to lines which
belong to the same bu�er, a condition of type cursors-are-not-comparable

is signaled.

⇒ cursor> cursor &rest more-cursors [Function]

Return true if for each adjacent pair of cursors (c1, c2) in the sequence of cursors
consisting of cursor followed by more-cursors, c1 is positioned strictly after c2
in the bu�er. This function calls the generic function cursor<=/2 for each such
pair to check whether the property is violated. As a consequence, return true
if only cursor is supplied.

⇒ cursor</2 cursor1 cursor2 [Generic Function]

2.4. BUFFER EDIT PROTOCOL 15

Return true if cursor1 is positioned strictly before cursor2 in the bu�er.

If any of the cursors is not currently attached to a line, a condition of type
cursor-detached is signaled. Unless all cursors are attached to lines which
belong to the same bu�er, a condition of type cursors-are-not-comparable

is signaled.

⇒ cursor<=/2 cursor1 cursor2 [Generic Function]

Return true if cursor1 is positioned before or at the same position as cursor2
in the bu�er.

If any of the cursors is not currently attached to a line, a condition of type
cursor-detached is signaled. Unless all cursors are attached to lines which
belong to the same bu�er, a condition of type cursors-are-not-comparable

is signaled.

⇒ cursor=/2 cursor1 cursor2 [Generic Function]

Return true if cursor1 is positioned at the same position as cursor2 in the
bu�er.

If any of the cursors is not currently attached to a line, a condition of type
cursor-detached is signaled. Unless all cursors are attached to lines which
belong to the same bu�er, a condition of type cursors-are-not-comparable

is signaled.

2.4 Bu�er edit protocol

2.4.1 Protocol classes

⇒ buffer [Class]

This is the base class for all bu�ers. It should not itself be instantiated. Instead,
Clu�er contains di�erent modules, each providing a di�erent subclass of this
class that can be instantiated.

By default, it is recommended that client code instantiate the class buffer in
the package cluffer-standard-buffer. (See Section 3.3.)

16 CHAPTER 2. EXTERNAL PROTOCOLS

2.4.2 Operations on bu�ers

⇒ beginning-of-buffer-p cursor [Generic Function]

Return true if and only if cursor is located at the beginning of a bu�er.

⇒ end-of-buffer-p cursor [Generic Function]

Return true if and only if cursor is located at the end of a bu�er.

⇒ beginning-of-buffer cursor [Generic Function]

Position cursor at the very beginning of the bu�er.

⇒ end-of-buffer cursor [Generic Function]

Position cursor at the very end of the bu�er.

⇒ split-line-at-position line position [Generic Function]

Split line into two lines, the �rst cone containing the items preceding position

and the second one containing the items following position. After this opera-
tion, any left-sticky cursor located at position will be located at the end of the
�rst line, and any right-sticky cursor located at position will be located at the
beginning of the second line.

This operation is implemented in one of two ways:

1. Either the pre�x is moved from the original line to a new line. In this
case, the second of the two resulting lines is eq to the original one.

2. Or the su�x is moved from the original line to a new line. In this case,
the �rst of the two resulting lines is eq to the original one.

However, it is not speci�ed which of the two techniques is used, and it is not
speci�ed what value is returned from this operation.

⇒ split-line cursor [Generic Function]

Calling this function is equivalent to calling split-line-at-position, passing
it the line to which cursor is attached, and the position of cursor.

If cursor is not currently attached to a line, a condition of type cursor-detached
is signaled.

2.4. BUFFER EDIT PROTOCOL 17

⇒ join-line entity [Generic Function]

The argument entity may be a cursor or a line.

If entity is a line, then join that line with the line following it in the bu�er
to which the line is attached. If entity is a cursor, join the line to which the
cursor is attached with the line following it in the bu�er to which the line is
attached.

If entity is a cursor that is not currently attached to a line, a condition of type
cursor-detached is signaled.

If entity is a line that is not currently attached to a bu�er, a condition of type
line-detached is signaled.

If entity is a cursor and it is attached to the last line of the bu�er, the error
condition end-of-buffer will be signaled.

⇒ line-count bu�er [Generic Function]

Return the number of lines in bu�er.

⇒ line-number entity [Generic Function]

The argument entity may be a cursor or a line.

If entity is a cursor and that cursor is not attached to any line, a condition of
type cursor-detached is signaled.

If entity is a cursor and that cursor is attached to a line, then the generic
function line (See Section 2.3.) is called with entity as an argument and the
return value is used as argument in a recursive call to line-number.

If entity is a line and that line is not attached to a bu�er, then nil is returned.

If entity is a line and that line is attached to a bu�er, then the line number of
line in that bu�er is returned. The �rst line of the bu�er has the number 0.

⇒ find-line bu�er line-number [Generic Function]

Return the line in the bu�er with the given line-number. If line-number is
less than 0 then the error beginning-of-buffer is signaled. If line-number

is greater than or equal to the number of lines in the bu�er, then the error
end-of-buffer is signaled.

18 CHAPTER 2. EXTERNAL PROTOCOLS

Notice that the edit protocol does not contain any delete-line operation.
This design decision was made on purpose. By only providing join-line, we
guarantee that removing a line leaves a trace in the bu�er in the form of a
modi�cation operation on the �rst of the two lines that were joined. This
features is essential in order for the update protocol to work correctly.

2.5 Bu�er update protocol

The purpose of the bu�er update protocol is to allow for a number of edit oper-
ations to the bu�er without updating the view of the bu�er. This functionality
is important because a single command may result in an arbitrary number of
edit operations to the bu�er, and we typically want the view to be updated
only once, when all those edit operations have been executed.

At the center of the update protocol is the concept of a time stamp. The
nature of this time stamp is not speci�ed, other than the fact that its value is
incremented for each operation that alters the contents of the bu�er. The only
operation allowed by client code on a time stamp is to store it and pass it as
an argument to the protocol function update.

⇒ items line &key start end [Generic Function]

Return the items of line as a vector. The keyword parameters start and end

have the same interpretation as for Common Lisp sequence functions.

⇒ update bu�er time sync skip modify create [Generic Function]

The bu�er parameter is a bu�er that might have been modi�ed since the last
update operation. The time parameter is the time stamp of the last time the
update operation was called, so that the update function will report modi�-
cations since that time. In addition to time stamps, the time argument can
also be nil, which is interpreted as the beginning of time. Thus, when nil is
given as a value of this argument, the operations generated correspond to the
creation of the bu�er.

The update function returns a new time stamp to be used as the time argument
in the next call to update.

The time stamp is speci�c to each bu�er, and more importantly, to each bu�er

2.5. BUFFER UPDATE PROTOCOL 19

implementation. The consequences are unspeci�ed if a time stamp returned by
calling update on one bu�er is used in a call to update with a di�erent bu�er.

The parameters sync, skip, modify, and create, are functions that are called
by the update function. They are to be considered as edit operations on some
representation of the bu�er as it was after the previous call to update. The
operations have the following meaning:

� sync indicates the �rst unmodi�ed line after a sequence of new or modi�ed
lines. Accordingly, this function is called once, following one or more calls
to create or modify. This function is called with a single argument: the
unmodi�ed line. Client code must compare the current line of its view
to the argument, and delete the current line repeatedly until the two are
eq. Finally, it must make the immediately following line the current one.

� skip indicates that a number of lines have not been subject to any mod-
i�cations since the last update. The function takes a single argument,
the number of lines to skip. This function is called �rst to indicate that
a pre�x of the bu�er is unmodi�ed, or after a sync operation to indicate
that that many lines following the one given as argument to the sync

operation are unmodi�ed. This operation is also called when there are
unmodi�ed lines at the end of the bu�er so that the total line count of the
bu�er corresponds to the total number of lines mentioned in the sequence
of operations.

� modify indicates a line that has been modi�ed. The function is called
with that line as an argument. Client code must compare the current
line of its view to the argument, and delete the current line repeatedly
until the two are eq. It must then take whatever action is needed for the
modi�ed contents of the line, and �nally it must make the immediately
following line the current one.

� create indicates a line that has been created. The function is called with
that line as an argument.

20 CHAPTER 2. EXTERNAL PROTOCOLS

Chapter 3

Supplied implementations

3.1 Standard line

3.1.1 Characteristics

The standard line implementation provides a reasonably-e�cient implementa-
tion of the line-edit protocol. Two di�erent line classes are provided, one called
open and the other one called closed.

A line is open if it has been modi�ed after the last time client code asked for
its contents (as provided by the protocol generic function items). Otherwise
the line is closed. Open lines are typically e�cient for a number of consecutive
editing operations at positions that are close to one another, as is typically the
case when a region of text is inserted or deleted. Closed lines, on the other
hand, are e�cient when client code asks for the items contained in them.

Notice that for the typical scenario where an end user types text as one char-
acter at a time, the line into which the text is typed is going to be opened and
closed once for every keystroke. When the end user types the character, the
line will be opened in order to prepare it for the editing operation. Immedi-
ately after the editing operation terminates, the visible part of the text bu�er
is going to be displayed in some window on the screen. This display operation
requires the client code to ask for the contents of the line, which will require

21

22 CHAPTER 3. SUPPLIED IMPLEMENTATIONS

the line to be closed.

While this alternate opening and closing of the line may seem unreasonably
ine�cient, notice that it is happening at typing speed, so that there is typ-
ically ample time for these operations between two keystrokes typed. More
importantly, the scenario of an end user typing text is not the one for which
this design was optimized. Instead, it was designed for cases where a single
keystroke results in multiple editing operations. Typical such scenarios include
inserting and deleting a region of text, or executing a keyboard macro that re-
sults in multiple editing operations. The design of the standard line allows such
operations to be implemented as a sequence of elementary editing operations
without a�ecting performance. As long as the contents of the line is not asked
for (presumably for that contents to be displayed), the line remains open.

In addition to two di�erent types of line, the standard-line implementation
provides two types of cursors, namely left-sticky and right-sticky cursors. The
two cursor types di�er in behavior when an item is inserted at the very position
of the cursor. In this case, the left-sticky cursor keeps its old position, whereas
the position of any right-sticky cursor is incremented. A right-sticky cursor is
typically used for the place where end-user editing operations take place (the
point in the terminology of Emacs). A left-sticky cursor can be used to mark
the end of a region when the desired e�ect is that an insertion of an item at
the end of the region should not be included in the region.

3.1.2 Package

The package named cluffer-standard-line is used for all names that are
speci�c to the implementation of standard lines.

3.1.3 Classes

⇒ line [Class]

This class is a subclass of the protocol class named line in the package named
cluffer.

⇒ open-line [Class]

3.2. SIMPLE LINE 23

This class is a subclass of the class named line. It is used when the contents
of the line is modi�ed.

For this class, the contents is represented as a simple gap bu�er so that adding
or deleting items is done at the beginning or the end of the gap.

⇒ closed-line [Class]

This class is a subclass of the class named line. It is used when the contents
of the line has not been modi�ed after an invocation of the function items.

For this class, the contents is represented by a simple Common Lisp vector.
Whenever items is invoked on a closed line and the entire contents is asked
for, this simple vector is returned, and no copy is made.

⇒ cursor [Class]

This class is the base class for the cursor classes provide by the standard-line
implementation.

⇒ left-sticky-cursor [Class]

This class is used for cursors that should have their positions unaltered when
an item is inserted at the very position of the cursor. It is a subclass of the
class cursor.

⇒ right-sticky-cursor [Class]

This class is used for cursors that should have their positions incremented when
an item is inserted at the very position of the cursor. It is a subclass of the
class cursor.

3.2 Simple line

3.2.1 Characteristics

The simple line implementation was written mainly for testing purposes. No
attempt has been made to optimize the implementation of the operations of a
simple line.

A line in this implementation is implemented as Common Lisp simple vector.

24 CHAPTER 3. SUPPLIED IMPLEMENTATIONS

Every simple editing operation requires that this vector be re-allocated with a
di�erent size.

Another use for this line implementation is as an illustration of the semantics
of the various protocol generic functions, so that it can be used as a model for
new implementations of the line-edit protocol.

3.2.2 Package

The package named cluffer-simple-line is used for all names that are spe-
ci�c to the implementation of simple lines.

3.2.3 Classes

⇒ line [Class]

This class is a subclass of the protocol class named line in the package named
cluffer.

Contrary to the standard line (See Section 3.1.) the simple line has no concept
of open or closed lines. All lines are represented the same way with the items
stored in a simple Common Lisp vector.

3.3 Standard bu�er

3.3.1 Characteristics

The standard bu�er representation organizes the lines in a splay tree [ST85].
This organization has several advantages:

� A line that is modi�ed moves to the root of the tree, and recently used
lines stay close to the root, making some editing operations more e�cient.

� It is computationally cheap to know the line number of the current line
at all times.

3.4. SIMPLE BUFFER 25

3.3.2 Package

The package named cluffer-standard-buffer is used for all names that are
speci�c to the implementation of the standard bu�er.

3.3.3 Classes

⇒ buffer [Class]

This class is a subclass of the protocol class named buffer in the package
named cluffer.

⇒ :initial-line [Initarg]

This initarg must be supplied when the buffer class is instantiated. This
initarg is the mechanism by which the otherwise independent implementations
of the bu�er and the line protocols are connected.

3.4 Simple bu�er

3.4.1 Characteristics

The simple bu�er implementation was written mainly for testing purposes. No
attempt has been made to optimize the implementation of the operations of a
simple bu�er.

The lines are stored in a Common Lisp simple vector. Whenever a line is added
or removed, the vector is reallocated. To compute the number of items in the
bu�er, the sum of the items of each line is computed.

3.4.2 Package

The package named cluffer-simple-buffer is used for all names that are
speci�c to the implementation of the simple bu�er.

26 CHAPTER 3. SUPPLIED IMPLEMENTATIONS

3.4.3 Classes

⇒ buffer [Class]

This class is a subclass of the protocol class named buffer in the package
named cluffer.

⇒ :initial-line [Initarg]

Just as with the standard line, this initarg must be supplied when the buffer
class is instantiated.

Chapter 4

Writing new implementations

4.1 Introduction

In general, we advise against the :use of packages other than the common-lisp
package. For that reason, in the remainder of this chapter, we use explicit
package pre�xes to make it clear what symbols are referred to.

4.2 Writing new line implementations

4.2.1 Package

It is generally a good idea to de�ne a new package for a new implementation
of the concept of a line. For the remainder of this section, we use the name
new-line for this package.

4.2.2 Classes

A class that is a subclass of cluffer:line must be provided. In the remainder
of this section we refer to this class as new-line:line.

27

28 CHAPTER 4. WRITING NEW IMPLEMENTATIONS

It is not mandatory to provide any implementation of the cursor abstraction,
but if such an abstraction is provided, it is recommended that the root class
of all cursor classes be a subclass of cluffer:cursor. In the remainder of this
section we refer to this class as new-line:cursor.

Both the standard line (See Section 3.1.) and the simple line (See Section 3.2.)
provide two kinds of cursor abstractions, namely left-sticky cursors and right-

sticky cursors. If the new implementation provides di�erent kinds of cursors,
the di�erent behavior can be accomplished either by subclassing as is done
in both provided implementations, or it can be accomplished by some other
means such as storing additional information in slots of the root class.

4.2.3 Methods

In addition to the methods documented in this section, a new implementa-
tion may de�ne methods on generic functions for which default methods are
provided.

In particular, Clu�er provides default methods on many cursor operations such
as delete-item, forward-item, etc. that call more basic generic functions to
accomplish the task. It might be advantageous for performance reasons for a
new implementation to de�ne methods on such functions in addition to the
ones document here.

⇒ item-count (line new-line:line) [Method]

This method should return the number of items in line.

If the new implementation de�nes subclasses of new-line:line for which the
item count is computed di�erently, as is the case for the standard line (See
Section 3.1.) then this method must be replaced by a method for each subclass
with a speci�c way of computing the item count.

⇒ item-at-position (line new-line:line) position [Method]

This method should return the item at position in line.

There is no need to check that position is a valid item position in line. This
check is already taken care of by an auxiliary method on item-at-position.

4.2. WRITING NEW LINE IMPLEMENTATIONS 29

As with item-count, if the new implementation de�nes subclasses of the root
class new-line:line for which the item at a particular position is computed
di�erently, as is the case for the standard line (See Section 3.1.) then this
method must be replaced by a method for each subclass with a speci�c way of
computing the item count.

⇒ insert-item-at-position (line new-line:line) item position [Method]

This method should insert item at position in line.

There is no need to check that position is a valid insertion position in line. This
check is already taken care of by an auxiliary method on the generic function
insert-item-at-position.

⇒ delete-item-at-position (line new-line:line) position [Method]

This method should delete the item at position in line.

There is no need to check that position is a valid item position in line. This
check is already taken care of by an auxiliary method on the generic function
delete-item-at-position.

⇒ items (line new-line:line) [Method]

This method should return all the items in line.

The generic function items is typically not called by implementations of the
bu�er protocol; only by client code. Therefore, the data type used to return
the items is a matter between the line implementation and the application.
Both the simple line (See Section 3.2.) and the standard line (See Section 3.1.)
return the items as a simple vector. For applications that allow only character
items, it might be a good idea to return the contents as a string instead.

It is even possible to omit this method altogether, since it is always possible
for client code to obtain the items of a line by calling the generic function
item-at-position for each possible position of the line.

⇒ cursor-attached-p (cursor new-line:cursor) [Method]

This method should return true if and only if cursor is currently attached to
a line.

⇒ cursor-position (cursor new-line:cursor) [Method]

30 CHAPTER 4. WRITING NEW IMPLEMENTATIONS

This method should return the position of cursor in the line to which cursor

is attached.

There is no need to check that cursor is attached to a line. This check is already
taken care of by an auxiliary method on the generic function cursor-position.

⇒ (setf cursor-position) new-position (cursor new-line:cursor) [Method]

This method should set the position of cursor to new-position in the line to
which cursor is attached

There is no need to check that cursor is attached to a line. This check is
already taken care of by an auxiliary method on (setf cursor-position).

There is also no need to check that new-position is a valid cursor position in
the line to which cursor is attached. This check is already taken care of by
another auxiliary method on the generic function (setf cursor-position).

⇒ cluffer-internal:line-split-line (line new-line:line) position [Method]

This method should split line at position and return the newly-created line,
i.e., the line that holds the items that are initially located after position in line.

Cursors that are initially located after position in line should be detached from
line and attached to the newly-created line.

Cursors that are initially located exactly at position can either be left attached
to line (and will then be at the end), or they can be detached from line and
attached to the newly-created line (and will then be at the beginning). Both the
simple line (See Section 3.2.) and the standard line (See Section 3.1.) provide
two di�erent kinds of cursors, namely left-sticky and right-sticky cursors that
behave di�erently in this situations in that left-sticky cursors remain in the
initial line and right-sticky cursors will be attached to the newly-created line.

⇒ cluffer-internal:line-join-line (line1 new-line:line) line2 [Method]

This method should join line1 and line2 by adding the items of line2 to the end
of line1, detaching any cursors attached to line2, and attaching those cursors
to line1 in the appropriate position.

4.3. WRITING NEW BUFFER IMPLEMENTATIONS 31

4.3 Writing new bu�er implementations

4.3.1 Package

It is generally a good idea to de�ne a new package for a new implementation
of the concept of a bu�er. For the remainder of this section, we use the name
new-buffer for this package.

4.3.2 Classes

A class that is a subclass of cluffer:buffer must be provided. In the remain-
der of this section, we refer to this class as new-buffer:buffer.

A class that is a subclass of cluffer-internal:dock must be provided. The
purpose of this class is to serve as an intermediate between a line and the bu�er
in which the line is contained. In the remainder of this section, we refer to this
class as new-buffer:dock.

4.3.3 Methods

⇒ line-count (bu�er new-bu�er:bu�er) [Method]

This method should return the number of lines in bu�er.

⇒ item-count (bu�er new-bu�er:bu�er) [Method]

This method should return the number of items in bu�er. The number of items
in the bu�er is de�ned to be the sum of the number of items in each line of the
bu�er.

⇒ find-line (bu�er new-bu�er:bu�er) line-number [Method]

This method should return the line with the given line-number in bu�er.

There is no need to check that line-number is valid. This check is already taken
care of by an auxiliary method on line-number.

⇒ cluffer-internal:buffer-line-number

(bu�er new-bu�er:bu�er) (dock new-bu�er:dock) line [Method]

32 CHAPTER 4. WRITING NEW IMPLEMENTATIONS

This method is part of the internal protocol for communicating between the
line implementation and the bu�er implementation.

It should return the line number if line in bu�er. The parameter dock is the
dock to which the line is attached.

Implementations can choose to ignore either the bu�er or the dock parameter,
depending on how the bu�er is represented.

⇒ cluffer-internal:buffer-split-line

(bu�er new-bu�er:bu�er) (dock new-bu�er:dock) (line clu�er:line) position [Method]

This method is part of the internal protocol for communicating between the
line implementation and the bu�er implementation.

It must call cluffer-internal:line-split-line with line and position in
order to obtain a new line to insert into its bu�er representation, and it must
take into account that line now has fewer items in it as indicated by position.

Implementations can choose to ignore either the bu�er or the dock parameter,
depending on how the bu�er is represented.

⇒ cluffer-internal:buffer-join-line

(bu�er new-bu�er:bu�er) (dock new-bu�er:dock) (line clu�er:line) [Method]

This method is part of the internal protocol for communicating between the
line implementation and the bu�er implementation.

It must call cluffer-internal:line-join-line, passing it line and the line
following line in bu�er, and it must eliminate the line following line and take
into account that the items in it will be appended to line.

Implementations can choose to ignore either the bu�er or the dock parameter,
depending on how the bu�er is represented.

⇒ cluffer:update

(bu�er new-bu�er:bu�er) time sync skip modify create [Method]

This method is part of the update protocol. It should implement the update
protocol as described in Section 2.5.

Bibliography

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652�686, July 1985.

33

