
Clordane
An interactive debugger for

Common Lisp

Robert Strandh

2015

ii

Contents

1 Introduction 1

1.1 Purpose . 1

1.2 Terminology . 2

1.2.1 Application thread . 2

1.2.2 Debugger thread . 2

1.2.3 Poll point . 2

1.2.4 Break point . 2

1.2.5 Stopping point . 3

1.2.6 Continue . 3

1.2.7 Advance . 3

1.2.8 Step . 4

2 Di�erent types of windows 5

2.1 Source window . 5

2.2 Stopping point window . 5

2.3 Stack backtrace window . 6

2.4 Interaction window . 6

3 Breakpoints 7

3.1 Creating or destroying a breakpoint 7

4 Examining and modifying data 9

5 Stepping 11

6 Backtrace 13

A Implementing poll points 15

iii

iv CONTENTS

Bibliography 17

Chapter 1

Introduction

1.1 Purpose

Clordane is a debugger for Common Lisp. The Common Lisp standard has an

entry for the word �debugger� in the glossary, but there are no requirements

on the capabilities of a debugger there, other than that it should allow the

user to handle conditions interactively. Most existing implementations provide

more functionality, such as the ability to examine active stack frames including

the values of live variables and the source location of the return address of a

particular stack frame.

In this document, we de�ne a debugger with many more features than what is

typically provided. In particular, we take advantage of the existence of threads

in most modern Common Lisp implementations to de�ne improvements to the

operations provided by the debugger.

The downside of these additional features is that Clordane will require much

more assistance from the supported implementations than required by existing

debuggers.

1

2 CHAPTER 1. INTRODUCTION

1.2 Terminology

1.2.1 Application thread

From the point of view of Clordane, the application thread is the thread that

the programmer wants to debug. Other threads running the same code as

the application thread are not a�ected by the debugging actions taken by the

programmer.

The application thread can run any code, including that of Clordane.

1.2.2 Debugger thread

The debugger thread is the thread running Clordane. The debugger thread can

not debug itself, but it can debug the same code running in a di�erent thread.

1.2.3 Poll point

A poll point is a place in the program where a running thread can be stopped.

From the point of view of the compiler, a poll point is a place where code is

inserted so that the program interrogates its thread to see whether it should take

some action, such as generating trace output, stopping the execution, or some

other action. For a possible implementation of poll points, see Appendix A.

The compiler generates poll points only where it is safe to stop the program.

Compiling code with a higher debug value gives executable code with more poll

points.

1.2.4 Break point

A break point is a poll point that has been marked to indicate that the running

program should stop its execution when it is reached.

1.2. TERMINOLOGY 3

Such break points can be created or destroyed for a thread by Clordane inde-

pendently of whether the thread is currently executing or currently stopped.

A break point can be steady or volatile. A steady break point is destroyed only

as a result of an action on the part of the programmer. All volatile break points

are destroyed when the program stops at any breakpoint.

A break point can be associated with a Common Lisp form to be evaluated

when the break point is reached. The form is evaluated by Clordane. Tracing

can be accomplished by associating with the break point a form that will print

some information and then continue the execution of the thread.

1.2.5 Stopping point

A stopping point is a place in the program where the thread of execution is

currently stopped. A stopping point can be any program counter value, but

a value of the program counter other than a poll point can not be reached by

creating a break point. It can, however, be reached by stepping by instruction

after the program has stopped at a poll point.

1.2.6 Continue

One action the programmer can take when the application thread is stopped is

to instruct Clordane to continue the execution of the application thread. The

execution of the application thread will then resume until it either terminates

or reaches a break point.

1.2.7 Advance

When the application thread is stopped, the application programmer can in-

struct Clordane to advance to a particular poll point. Clordane will then insert

a volatile break point at that point and then continue the execution of the ap-

plication thread.

4 CHAPTER 1. INTRODUCTION

1.2.8 Step

The application programmer can instruct Clordane to step the execution of the

application thread, either by poll point or by instruction.

Stepping by poll point comes in three variants, namely step in, step out, and

step over. The step in command steps to the next poll point inside the next

form to be evaluated. The step out command �nishes the execution of the

current form and stops at the end of that form. The step over command

evaluates the next form and then stops at the end if it, except when there is

more than one possible next form (as a result of a condition) when it stops at

the beginning of the next form.

When Clordane is instructed to step by poll point, it inserts one or more volatile

break points at appropriate poll points in the program, and then continues

executions until some break point is reached, at which point it will stop the

application thread and destroy all volatile break points independently of the

kind of break point that was reached.

When Clordane is instructed to step by instruction, it will execute the next

machine instruction and then stop the execution of the application thread.

Chapter 2

Di�erent types of windows

2.1 Source window

A source window is a window that displays source code together with poll

points. A poll point which is not a break point is shown as a cursor with blue

color. A poll point which is also a break point is shown as a cursor with red

color.

2.2 Stopping point window

A stopping point window is a window that is popped up whenever the appli-

cation thread is stopped.

The stopping point window shows the position of the stopping point and vari-

ables that are live at the stopping point. The value of a live variable can be

obtained by hovering the pointer over the variable.

In the stopping point window is also shown poll points in the source code to

which the user can ask the program to advance. Clicking with the left mouse

button on such a point will set a temporary stopping point at that position

and then the program will continue from the stopping point. The temporary

stopping point is removed as soon as it is reached.

5

6 CHAPTER 2. DIFFERENT TYPES OF WINDOWS

In this window, there are button that the user can click on. One such button is

marked Finish and results in the program continuing from the stopping point

to immediately after the next return.

Another button is marked Enter. This button is clickable only if the stopping

point immediately precedes a function call or a tail call. Clicking this button

sets a temporary stopping point at the start of the function about to be called

and then the program execution continues from the stopping point.

2.3 Stack backtrace window

Whenever the program is stopped, the stack backtrace window is updated. See

Chapter 6 for more information on the backtrace facility.

2.4 Interaction window

This window provides the user with a read-eval-print loop, augmented with

the possibility of submitting commands by starting an interaction with the

comma character.

Chapter 3

Breakpoints

3.1 Creating or destroying a breakpoint

When the mouse is in a source window, poll point are shown as blue cursors.

A break point set are shown as red cursors.

Clicking with the left mouse button on a blue cursor will create a break point

at that poll point, and the cursor will change color to red.

Clicking with the left mouse button on a red cursor will pop up a menu with

several choices concerning that break point:

• Destroy the breakpoint.

• Add a form. This choice will open an code input window allowing the

user to type a form. Each time the program control reaches a break point,

the form is evaluated.

• Remove the form.

• Etc.

7

8 CHAPTER 3. BREAKPOINTS

Chapter 4

Examining and modifying data

When the application is stopped at some stopping point, Clordane provides a

REPL for the user. This REPL is not the ordinary REPL of the Common Lisp

implementation, in that it operates in the lexical environment of the stopping

point. Also, the available functionality of the REPL may be restricted so as to

preserve the integrity of the system.

In particular, a references to a lexical variable is resolved to the place where the

compiler allocated space for it, which might be in a register or on the stack. The

set of available such references may depend on the debug level when the code

was compiled. The application programmer may use setq to alter the value of

lexical variables. The value to be assigned is then restricted to the type that

the compiler inferred for this variable so that the code behaves in a consistent

way after an assignment. Implementations may of course choose to disable

type inference so that any value is allowed, or they may disallow references to

lexical variables for which they have no Clordane assignment support.

In addition to providing a REPL, Clordane automatically displays all available

lexical variables at the stopping point, allowing the application programmer to

see which variables can be referred to. Each variable is shown with its name,

its value (which may be clicked on for inspection), and its type.

9

10 CHAPTER 4. EXAMINING AND MODIFYING DATA

Chapter 5

Stepping

Stepping refers to the action of making the execution of the debugged program

advance by a speci�c unit of code. There are several ways for the programmer

to determine the unit of code to step by:

• If the current stopping point is located immediately before some expres-

sion, then the step may execute that expression and then stop when that

expression is completely evaluated. This action is called step over.

• If the current stopping point is located immediately before some expres-

sion, then the step may execute that expression and then stop immedi-

ately before the next expression to be evaluated. This action is called

step next

• If the current stopping point is located immediately after some expres-

sion, then the step may result in no execution, and then stop immediately

before the next expression to be evaluated. This action is called step null

• If the current stopping point is located immediately after some expres-

sion, then the step may execute the next expression to be evaluated and

then stop immediately after that expression. This action is called step

next and is distinguished from the previous action by the initial position

of the stopping point. If the stopping point is both immediately after

some expression and immediately before the following expression, then

this action is equivalent to step over.

11

12 CHAPTER 5. STEPPING

• If the current stopping point is located immediately before some expres-

sion and that expression is a function call, then the step may be to enter

the called function and stop before the �rst expression of that function

is evaluated. This action is called step in

• The remaining expressions of the currently executing function may be

evaluated and execution stopped immediately after that function returns

to its caller. This action is called step �nish.

• The step could be a single machine instruction in which case the next

instruction is executed and then the execution is stopped. This action is

called step instruction.

Chapter 6

Backtrace

When an unhandled error is signaled in the application thread, the execution

of that thread is stopped, and Clordane displays a backtrace. By default, the

backtrace shows only function calls that are part of the application itself, and

not part of the internal workings of the Common Lisp system. A button can

be clicked on to toggle this setting so that all stack frames are shown.

Clicking on one of the stack frames makes this stack frame the current one. A

di�erent stack frame can also be selected by navigating with the keystrokes p

(for previous) and n (for next). The Clordane REPL can then be used to eval-

uate forms in the lexical environment of that stack frame, and the *package*

special variable is set to the package in which the code of the current stack

frame has been de�ned.

Initially, the stoppingpoint window discussed in Section 2.2 shows the point in

the code where the error was signaled. When the user selects some stack frame,

the stoppingpoint window shows the code around the point where execution

will resume if control is returned to that stack frame. As before, the value of

live variables can be obtained by hovering the pointer over a variable.

13

14 CHAPTER 6. BACKTRACE

Appendix A

Implementing poll points

There are many ways of implementing poll points. However, we consider that

a reasonable implementation must have the following characteristics:

• There should be little or no performance penalty for code that is running

in some thread other than a thread being debugged.

• There should be little performance penalty for poll points that are not

currently breakpoints.

We suggest the following technique which will work for any processor architec-

ture:

• The thread instance contains three pieces of information associated with

poll points:

1. A debug �ag which is a single bit indicating whether the thread is

running under the control of the debugger. At the beginning of each

top-level function compiled with a high value of the debug quality,

this �ag is loaded into a lexical variable, subject to register allocation

as usual.

2. A breakpoint table (perhaps a hash table) indexed by values of the

program counter, and containing information about the nature of a

breakpoint at this program point.

15

16 APPENDIX A. IMPLEMENTING POLL POINTS

3. A small bit table, say 1024 bits or so. The index into this table is the

value of the program counter modulo its size. It contains summary

information from the previous table, i.e., whenever some value of

the program counter is present in the breakpoint table, then the

corresponding bit is set in this bit table.

• When code is compiled with a high value of the debug quality, a small,

local routine is added to each top-level function. This routine is called

using an inexpensive call protocol, typically just a jsr instruction. The

routine performs the following actions:

� It starts by checking the debug �ag that was loaded into a lexical

variable from the thread instance of the running thread. If that �ag

is cleared, then the routine returns without any action.

� If the �ag is set, then it uses the value of the program counter stored

on the stack as part of the call protocol. It takes that value modulo

the size of the bit table and checks whether the entry in the bit table

is set. If it is cleared, again, the routine returns without any action.

� If the bit-table entry is set, then it consults the breakpoint table

to see whether the actual value of the program counter is present

there. If not, the routine again returns normally. If it is present,

then it suspends the execution of the thread and hands over control

to the debugger thread.

• Also when code is compiled with a high value of the debug quality, a call

to the small routine is inserted before the beginning, and after the end

of the execution of every source-level form present in the code.

The debugger maintains the breakpoint table and the bit table as follows:

• When a breakpoint is set, it is added to the breakpoint table, and bit in

the bit table corresponding to the value of the program counter modulo

the size of the bit table is set.

• When a breakpoint is removed, the entire bit table is �rst cleared. Then

the breakpoint table is traversed and, for each breakpoint, the corre-

sponding bit in the bit table is set as before.

Bibliography

17

	Introduction
	Purpose
	Terminology
	Application thread
	Debugger thread
	Poll point
	Break point
	Stopping point
	Continue
	Advance
	Step

	Different types of windows
	Source window
	Stopping point window
	Stack backtrace window
	Interaction window

	Breakpoints
	Creating or destroying a breakpoint

	Examining and modifying data
	Stepping
	Backtrace
	Implementing poll points
	Bibliography

