
Choosing a programming language

Robert Strandh

University of Bordeaux

May, 2018

Dfind, Göteborg



Overview of talk

I Programming language characteristics.

I Common misconceptions.

I Requirements for making a good choice.

I Risk analysis.

2/49



How the choice is often made

The choice of programming language for a project (when there are
several possibilities) is often based on gut feeling.

Often, no real analysis is made, because the decision maker:

I has only partial knowledge of the characteristics of possible
choices;

I sometimes has incorrect information about the possible
choices;

I has insufficient training to appreciate the characteristics of
possible choices;

3/49



How the choice is often made

Often, no real analysis is made, because the decision maker:

I has insufficient experience with the possible choices to
determine which choice is adapted to the current project;

I has insufficient information about the cost associated with
training staff in a new language vs the productivity
advantages of that language;

I has insufficient information about the cost associated with
hiring new staff for a new language vs the productivity
advantages of that language.

4/49



Language vs implementation

5/49



Language vs implementation

Language: A description of the syntax and semantics of
conforming programs, and of consequences of using
non-conforming constructs.

Example of the latter: In C, obtaining a pointer outside of an array
has undefined consequences. (It is interesting to contemplate why.)

6/49



Language vs implementation

Implementation: Software that accepts conforming programs and
executes them according to the language semantics, and that
reports non-conforming constructs where required by the language
definition.

7/49



Language vs implementation

In many cases, the language definition does not require the
compiler to check for non-conforming constructs. Why?

As a consequence, many non-conforming programs go undetected.

8/49



Language vs implementation

The distinction language/implementation is sometimes blurred:

I Some languages are defined by a reference implementation.
Examples?

I Some language definitions are controlled by the same
organization that supplies some dominating implementation.
Examples?

9/49



Language vs implementation

The distinction language/implementation is sometimes blurred:

I Some languages are defined by a reference implementation.
Perl, Python, Scala, Ruby, Clojure.

I Some language definitions are controlled by the same
organization that supplies some dominating implementation.
Java, C#, Objective C.

10/49



Language characteristics

11/49



Strong vs weak typing

A language can be strongly typed or weakly typed, and even
untyped.

Strongly typed: It is impossible for an object of one type to be
mistaken for an object of a different type. Either the compiler
made sure no mistake is possible, or the run-time system checked
it. Examples?

Weakly typed: No such guarantees are made. Examples?

Untyped: Data can be interpreted differently by different
operations. Examples?

12/49



Strong vs weak typing

A language can be strongly typed or weakly typed, and even
untyped.

Strongly typed: It is impossible for an object of one type to be
mistaken for an object of a different type. Either the compiler
made sure no mistake is possible, or the run-time system checked
it. Examples: Java, C#, Common Lisp, Scheme, Clojure.

Weakly typed: No such guarantees are made. Examples: C, C++.

Untyped: Data can be interpreted differently by different
operations. Example: Assembler.

13/49



Static vs dynamic typing

A language can be statically typed or dynamically typed.

Static typing: Type information is associated with the variables in
the program. Type checking or type inference is always handled at
compile time. Examples?

Dynamic typing: Type information is associated with the objects
manipulated by the program. Type checking must sometimes be
done at execution time. Not always? Examples?

14/49



Static vs dynamic typing

A language can be statically typed or dynamically typed.

Static typing: Type information is associated with the variables in
the program. Type checking or type inference is always handled at
compile time. Examples: C, Java, ML, Haskell.

Dynamic typing: Type information is associated with the objects
manipulated by the program. Type checking must sometimes be
done at execution time. Examples: Lisp, Scheme, Python.

15/49



Manifest vs implicit typing

A statically typed programming language may be based on
manifest typing or implicit typing.

Manifest typing: The programmers supplies the type of the
variables explicitly. Examples?

Implicit typing (sometimes called latent typing): The compiler
infers the type of the variables from the operations it participates
in. Examples?

16/49



Manifest vs implicit typing

A statically typed programming language may be based on
manifest typing or implicit typing.

Manifest typing: The programmers supplies the type of the
variables explicitly. Examples: C, C++, Java, C#.

Implicit typing (sometimes called latent typing): The compiler
infers the type of the variables from the operations it participates
in. Examples: ML, Haskell.

17/49



Manifest vs implicit typing

Why is the distinction between manifest and implicit typing
important?

With manifest typing, the programmer is given too much
responsibility too early in the development process. Choices made
may easily change later on.

18/49



Manifest vs implicit typing

Some dynamically typed programming languages allow optional
type declarations.

Such declarations are sometimes used in order to allow the
compiler to generate faster code.

19/49



Static vs dynamic

A programming language can be either static or dynamic.

Static: There is a clear distinction between compile time and run
time. Code is generated at compile time and executed at run time.
Examples?

Dynamic: There is no clear distinction between compile time and
run time. The program might change as a result of executing code
(for example, executing a statement that defines a function or a
class). Examples?

20/49



Static vs dynamic

A programming language can be either static or dynamic.

Static: There is a clear distinction between compile time and run
time. Code is generated at compile time and executed at run time.
Examples: C, C++, Java, C#, Haskell, ML.

Dynamic: There is no clear distinction between compile time and
run time. The program might change as a result of executing code
(for example, executing a statement that defines a function or a
class). Examples: Common Lisp, Scheme, Python.

21/49



Interpreted vs compiled

Can you guess what an interpreted programming language is and
what a compiled programming language might be?

22/49



Interpreted vs compiled

Can you guess what an interpreted programming language is and
what a compiled programming language might be?

A programming language is neither interpreted nor compiled. A
programming language implementation is either one or both (it is a
spectrum of possibilities).

23/49



Interpreted vs compiled

The distinction is important because it affects the execution
performance of the program.

An implementation that compiles to native code has the potential
of generating fast code.

An implementation that has more elements of interpretation can
generate code that is slower by a factor 10 or more compared to
code generated by a native compiler.

24/49



Manual vs automatic memory management

Manual memory management: The language requires the
programmer to de-allocate objects that are no longer going to be
referenced. Examples?

Automatic memory management: The implementation of the
language is required to automatically recycle objects that are no
longer referenced. Examples?

25/49



Manual vs automatic memory management

Manual memory management: The language requires the
programmer to de-allocate objects that are no longer going to be
referenced. Examples: C, C++

Automatic memory management: The implementation of the
language is required to automatically recycle objects that are no
longer referenced. Examples: Java, C#, Common Lisp, Haskell.

26/49



Standardization

A language is said to have an independent standard if and only if
the definition of the language is published by an organization other
than a supplier of an implementation.

27/49



Scripting languages

There are few properties that characterize scripting languages.
Probably only:

I The creators meant for the language to be used for scripting.

I It is a dynamic language.

Common scripting languages are single-implementation languages
with the implementation written as a slow interpreter. This
technique is considered acceptable because of the first item above.

28/49



Scripting languages

Typically, a static language is used for the main body of code, and
a “scripting language” for, um, scripting.

When the advanced user starts writing serious code using the
scripting language (because that’s the only choice possible), the
combined result is slow despite the best intentions of the creators.

Furthermore, debugging code written in two languages is typically
hard.

29/49



Domain-specific languages

A domain-specific language is a language that was designed for a
particular family of programming tasks.

Often, the language is defined by the same organization that then
uses it.

The productivity advantage can be huge.

Designing and implementing a domain-specific language requires
expertise in language design and compiler technology.

30/49



Common misconceptions

31/49



Manual vs automatic memory management

Common misconception: manual memory management is faster
than automatic memory management.

With manual memory management, for modularity, it is often
necessary to copy objects or to use reference counters.

Such techniques can easily incur a performance penalty of a factor
10–100 on modern hardware. Why?

Modern garbage collectors are fast, concurrent, multi-threaded,
and some have real-time or near-real-time guarantees.

32/49



Compiled/static vs interpreted/dynamic

Common misconception: dynamic languages must be interpreted.

Conversely: only static languages can be compiled.

Modern implementations of dynamic languages generate native
code on the fly.

33/49



Alternatives to scripting languages

Use the same dynamic language for the main body of code and for
scripting purposes.

Choose a language that has an efficient implementation that
compiles to native code.

34/49



So how do we choose a language?

35/49



So how do we choose a language?

Making a good language choice requires:

I Good knowledge of the characteristics of several programming
languages (the subject of this talk).

I Good knowledge of the nature of the task to be accomplished.

I A separate and detailed budget for each “reasonable”
language choice.

We will look at the last item a bit more.

36/49



How not to choose

I “We need all the speed we can get, and it is known that the
C++ compiler generates very fast code. Therefore we choose
C++.”

I “All our programmers already know Java. Therefore we
choose Java.”

I “We have made a huge investment in programming tools for
C#. Therefore we choose C#.”

37/49



What to include in the budgets

I Cost of acquisition of language tools.

I Estimated development and maintenance cost.

I Cost of training and hiring new staff.

I ...

I Risk analysis.

38/49



Risk analysis

For every major possible choice (tools, staff, development method,
etc.), make a list of possible events that might have a negative
impact on the project.

For each event, state:

I its likelihood,

I the cost to the project if nothing is done,

I actions to avoid the negative impact, and

I the cost of those actions.

39/49



Risk analysis

Example:

Choice: Make Joe a member of the staff. Joe is a reckless driver.

Event: Joe has a traffic accident and can no longer work on the
project.

Likelihood: Unlikely

Cost if nothing is done: The project will be delayed by six months.

Action: Hire a replacement for Joe.

Cost of action: Salary, training, etc.

40/49



Risk analysis

Example:

Choice: Use the language C#.

Event: Microsoft is bought by Apple (or Google) and C# is no
longer supported.

Likelihood: Unlikely

Cost if nothing is done: All code must be rewritten in Java.

Action: Obtain (buy, develop) a replacement for Microsoft C#.

Cost of action: Cost of purchase or development.

41/49



Standardization and risk analysis

If a language does not have an independent standard, its
specification may change as a result of the organization that
supplies the implementation.

The cost to a project could be huge. Much code may need to be
rewritten, perhaps not immediately, but over time.

Such possibilities must be taken into account in the risk analysis.

Examples?

42/49



Standardization and risk analysis

If a language does not have an independent standard, its
specification may change as a result of the organization that
supplies the implementation.

The cost to a project could be huge. Much code may need to be
rewritten, perhaps not immediately, but over time.

Such possibilities must be taken into account in the risk analysis.

Examples: Java, C#, Python, Scala, Ruby.

43/49



Availability of good implementations

A good implementation may exist when a project is started, but
might then be abandoned over time.

Again, the cost to a project could be huge, including a complete
rewrite using a different language.

Such possibilities must be taken into account in the risk analysis.

Examples?

44/49



Availability of good implementations

A good implementation may exist when a project is started, but
might then be abandoned over time.

Again, the cost to a project could be huge, including a complete
rewrite using a different language.

Such possibilities must be taken into account in the risk analysis.

Examples: Objective-C, Dylan.

45/49



Availability of programmers

New graduates may only know a few languages.

They may also have the wrong idea of languages they do not (yet)
know and sometimes also about the languages they (think they)
know.

For other languages, it may be necessary to train existing
programmers or to hire new programmers.

The salary may need to be higher. That will be another factor in
the cost analysis of the project.

46/49



Availability of programmers

For a medium-sized or large company, it is advisable to have
programmers with knowledge of several different programming
languages using different programming paradigms.

That way, a large spectrum of languages can be covered.

Programmers can participate in decisions about programming
languages, and they can help train other programmers.

47/49



Conclusions

Choosing the right language for a task can have a great impact on
the amount of work it takes to finish that task.

Making the right choice requires expertise that must either be
developed in-house, or hired when a new project is starting.

It is best to do a detailed cost/benefit analysis, including a risk
analysis, for each reasonable choice of a language.

48/49



Questions?

Thank you for listening!

Do you have any questions?

49/49


