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ABSTRACT
Garbage collection algorithms are divided into three main
categories, namely mark-and-sweep, mark-and-compact, and
copying collectors. The collectors in the mark-and-compact
category are frequently overlooked, perhaps because they
have traditionally been associated with greater cost than
collectors in the other categories. Among the compacting
collectors, the sliding collector has some advantages in that
it preserves the relative age of objects. The main problem
with the traditional sliding collector by Haddon and Waite
[4] is that building address-forwarding tables is costly. We
suggest an improvement to the existing algorithm that re-
verses the order between building the forwarding table and
moving the objects. Our method improves performance of
building the table, making the sliding collector a better con-
testant for young generations of objects (nurseries).

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory man-
agement (garbage collection)

General Terms
Algorithms, Performance

Keywords
Compaction, Sliding garbage collection

1. INTRODUCTION
As is evident from the books by Jones et al [5] [6], garbage
collection is a rich and much researched field. With the
evolution of processor technology, advantages and incon-
veniences of different techniques change. Current technology
requires techniques that take into account the big difference
in performance between the processor and the memory, as
well as the existence of several cores and threads.

In this paper, we consider an improvement to the table-based
sliding collector proposed by Haddon and Waite [4] in 1967.
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The sliding collector is a member of the family of mark-
and-compact techniques. Techniques in this family are not
prone to fragmentation as mark-and-sweep collectors are,
and do not require as much additional memory as do copy-
ing collectors. Furthermore, the techniques that use sliding
preserve the allocation order between objects, and therefore
their relative age, whereas copying collectors and mark-and-
sweep collectors do not. By preserving the allocation order,
two great advantages are gained:

• If the heap is part of a generational garbage collec-
tor, it is always possible to promote the oldest objects,
whereas with a copying collector, a significant number
of recently allocated objects may well be promoted,
even though they are likely to die soon after being
promoted.

• As Wilson [11] points out, objects that are allocated
together, die together. Thus, if the allocation order
is preserved, the heap is likely to have large inter-
vals of live objects and large intervals of dead objects.
When the allocation order is not preserved, the heap
will more likely contain more and smaller intervals of
live and dead objects.

The main reason that sliding techniques have largely been
abandoned, is that they incur a much higher cost than both
mark-and-sweep collectors and copying collectors, either in
terms of additional computations or additional memory re-
quirements, or both.

The method presented in this paper decreases the cost of
compaction by avoiding the need to move the so-called break
table used in the traditional sliding collector. Furthermore,
we suggest using our method for collecting a per-thread
nursery that fits in the processor cache. While a copying
collector can use only half the available space, a sliding col-
lector can use the entire available space. Because of the
increased size, compared to a copying collector for the nurs-
ery, our method will allow more objects to die between two
invocations, further reducing the overall cost of garbage col-
lection.

2. PREVIOUS WORK
2.1 Haddon and Waite
In 1967, Haddon and Waite [4] designed the first algorithm
for compacting garbage collection. The context of their work



was assumed to be an existing mark-and-sweep garbage col-
lector using a free list, and when that collector fails due
to fragmentation, even though there is enough total space
available, their compacting algorithm would take over and
compact the heap. The cost of their algorithm was consid-
ered unimportant, because the alternative would be to fail
by terminating the program.

Rather than invoking a marking procedure to determine live
data, they imagined using the existing free list to determine
areas of available storage.

An entry in their break table indicates a start address of a
zone of live data and the total amount of free space below
that address. There are many different possible variations
on the exact contents of the break table, but they are all
equivalent.

They show that, if each object requires at least two words
of storage, then the total amount of free space in the entire
heap is large enough to hold the break table. As a result,
no additional space is required for their technique to work.

2.2 Other work
Of the traditional compacting algorithms, three types of al-
gorithms preserve allocation order; the one by Haddon and
Waite [4], the so-called Lisp2 algorithm, and the threading
algorithms. The Lisp2 algorithm requires an additional field
the size of a pointer in each object in order to hold forward-
ing information. This field is set after the marking phase.
Pointers are then updated according to this information.
Finally, the heap is compacted. Threading algorithms by
Fisher [3], Morris [10], and Jonkers [7] work by reversing
pointers. In their survey of different compacting algorithms,
Cohen and Nicolau [2] conclude that the Lisp2 algorithm is
the fastest. Threading algorithms perform the worst.

Abuaiadh et al [1] designed a compaction algorithm that
uses forwarding information much like the Lisp2 algorithm.
However, to avoid the cost of an entire pointer per object,
they use a single word of forwarding information for around
256 bytes, which amounts to no more than a few bits per
word. Although reported to be fast, unfortunately, their
algorithm does not preserve the allocation order of objects.
Their paper mentions that benchmarks have verified the im-
portance of doing so. They report that compaction algo-
rithms may cause significant pauses, and their algorithm re-
duces these pauses. The reason for these pauses is no doubt
that the context of their work is a large global heap (they
mention 1GB), whereas the context of the present work is
the size of the nursery (around 4 MB).

Kermany et al [8] describe a compacting algorithm that uses
memory-mapping operations in order to compact the heap.
Their algorithm is parallel, concurrent, and incremental.
However, in addition to the cost of marking, moving objects,
and updating pointers, compared to the method described
in this paper, there is an additional cost associated with
the memory-mapping operations, and this cost is is non-
negligible. Forwarding information is handled the same way
as in the method used by Abuaiadh et al. Like the method
described by Haddon and Waite, and the method presented
in this paper, relative allocation order between the objects
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Figure 1: Example of initial heap.
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Figure 2: Pointers to source and destination locations.

is preserved.

3. OUR METHOD
Our method uses a break table just like the method by Had-
don and Waite [4], but instead of building, moving, and
sorting the table while objects are moved, we first move the
objects and then construct the table. For that, additional
space in the form of a bitmap is required. The bitmap has
one bit per word of memory in the heap, which amounts to
less than 2% additional memory on a 64-bit machine. The
bits in the bitmap are set by the mark phase of the garbage
collector.

Figure 1 shows a heap in which shaded areas indicate live
objects and white areas indicate dead objects. The heap
contains 16 word as shown by the addresses. At the bottom
of the figure is shown the bitmap after the mark phase (phase
1) is complete.

In phase 2, the heap is compacted by sliding the live objects
to the beginning of the heap. In this phase, two pointers
are used, a source pointer pointing to words containing live
objects, and a destination pointer pointing to words con-
taining dead objects, as illustrated by Figure 2. Words are
copied from the source location to the destination location.
In each iteration, the destination location is incremented by
one unit, whereas the source location is incremented until
either it reaches the end of the heap, or a word containing
a live object as indicated by the bitmap containing a 1.

Figure 3 shows the situation when phase 2 is complete.

In phase 3, a break table is built at the position of the des-
tination pointer. The break table consists of a sequence
a0, d0, a1, d1, . . . , an, dn, an+1 of alternating addresses and
deltas. The value a0 is always 0. The table has an odd
number of elements, because it both starts and ends with
an address. Each ai (except possibly a0 and an+1) is the
index of the beginning of a zone of dead objects. Each di is
the sum of the sizes of the dead zones preceding ai+1.

Figure 4 shows the break table of the example heap in Fig-
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Figure 3: Heap after compaction.
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Figure 4: Break table.

ure 1.

Notice that if both the bottom zone and the top zone of the
heap contain live objects, then our break table may require
three additional words of storage compared to the total num-
ber of free words available. The reason for this additional
requirement is that our table contains sentinels (the first
two words and the last word) that are not strictly required,
but by including them, we avoid special cases in our proce-
dure for searching the table. We can easily make sure that
three additional words are available by triggering a collec-
tion when granting a request for memory would leave fewer
than three free words at the end of the heap. Haddon and
Waite [4] did not have this luxury, because they assumed
an existing mark-and-sweep collector. For that reason, their
paper contains an extensive argument that their break table
can fit in the available space.

The break table is built by scanning the bitmap from start
to end. In practice, since the heap is likely to contain fairly
large contiguous zones, the bitmap will contain long runs
of 0s and long runs of 1s. It is therefore advantageous to
scan the bitmap a word at a time, making this phase quite
efficient.

In phase 4, the lower part of the heap is traversed word
by word in order to adjust the pointers according to the
contents of the break table. For each pointer value p, the
table is searched for values ai, di, ai+1 such that ai ≤ p <
ai+1. The pointer value p is adjusted by subtracting di from
it. To find the entry, the break table is search using binary
search.

While the overhead of the binary search may seem unaccept-
ably high, two properties contribute to keeping this overhead
low:

1. While the break table could contain as many as N/4
entries, where N is the number of words in the heap, in
practice, it contains far fewer than that, again because

the heap is likely to contain relatively few relatively
large zones.

2. It is very likely that the entry in the break table re-
quired to adjust a particular pointer is the same as the
entry required to adjust the pointer immediately pre-
ceding it. By testing this case first, the vast majority
of full binary searches can be avoided.

4. PERFORMANCE
It is notoriously hard to test the performance of garbage col-
lection algorithms. Nevertheless, we would like to get some
idea of the time the various phases take. To that end, we
created a few test cases which (together with some educated
guesses) will give us some ballpark figures with respect to
performance of our method, at least as compared to other
methods.

For our tests, we chose a heap size of 219 words of 8 bytes
each. This heap size was not chosen randomly. It was chosen
so that the entire heap would fit in the cache memory of the
computer used for the tests (x86-64, 1.6GHz, GNU/Linux,
SBCL), and research [9] indicates that a nursery this size is
a good choice.

Thus, we have the following definitions valid for all the tests:

(defparameter *size* (ash 1 19))

(defparameter *heap* (make-array *size*))

(defparameter *bitmap*
(make-array *size* :element-type ’bit))

4.1 Phase 1, marking
We did not attempt to test the marking phase, because it is
no different from the marking phase of any other algorithm.

4.2 Phase 2, compaction
To test the compaction phase, we wrote the following com-
paction program:

(defun move (heap bitmap)
(declare (type (simple-vector #.*size*) heap)

(type (array bit (#.*size*)) bitmap)
(optimize (speed 3) (safety 0) (debug 0)))

(let* ((d (position 0 bitmap))
(s (position 1 bitmap :start d)))

(declare (type (integer 0 #.*size*) d s))
(loop until (= s #.*size*)

do (setf (aref heap d) (aref heap s))
(incf d)
(incf s)
(loop until (or (= s #.*size*)

(= (sbit bitmap s) 1))
do (incf s)))))

The hypothesis here is that the time consumed by the com-
paction phase is determined by two elements:

1. A constant term that has to do with scanning the
bitmap.



2. A term proportional to the number of elements that
have to be moved.

To test the hypothesis, we executed the function move with
three different bitmaps as shown in the following table:

Element count CPU time (ms)
1 0.8

218 1.1
219 − 1 1.4

To avoid measuring the performance of the function posi-

tion, the first line in the table was executed with a bitmap
where the element with index 1 was equal to 1. The second
line in the table was executed with a bitmap where every
other element was 1. The third line in the table was ex-
ecuted with a bitmap where only element 0 was 0. In all
cases, the test was run in a loop with 1000 iterations. The
loop was the argument of the time macro, and the right col-
umn of the table shows the result returned by time divided
by 1000.

The hypothesis above seems confirmed where scanning the
bitmap seems to take around 0.8ms and moving an element
seems to take around 1ns per element.

Now, in a typical collection cycle, at least around half of the
elements of the heap would be dead (if not, objects would
be promoted). Furthermore, since objects that are allocated
together die together, the bitmap will contain long runs of 0s
and long runs of 1s, and because objects either die young or
survive a long time, the bitmap will typically start with a run
of 1s. A slightly more clever implementation of the bitmap
would then test 64 bits at a time rather than individual bits
like we do in our test. In such an implementation, the time
for managing the bitmap would be negligible. In a typical
collection cycle, significantly fewer than half of the elements
would have to be moved. The expected compaction time
would therefore be closer to 0.3ms.

4.3 Phase 3, building the table
In order to test the performance of building the table, we
used the following function:

(defun build-table (heap bitmap start)
(let ((acc 0)

(end start))
(declare (type fixnum acc start end)

(type (simple-vector #.*size*) heap)
(type (simple-array bit (#.*size*)) bitmap)
(optimize (speed 3) (safety 0) (debug 0)))

(loop for address of-type fixnum from 0
for prev of-type bit = 1 then bit
for bit of-type bit across bitmap
do (when (= bit 0)

(when (= prev 1)
(setf (svref heap end) address)
(setf (svref heap (1+ end)) acc)
(incf end 2))

(incf acc))
finally (when (= prev 1)

(setf (svref heap end) address)
(setf (svref heap (1+ end)) acc)
(incf end 2))

(return end))))

In that program, the parameter start contains the total
number of live words in the heap, which is the same as the
start index into the heap where the table should be built.

As for the compaction phase, the hypothesis here is that the
time consumed by the compaction phase is determined by
two elements:

1. A constant term that has to do with scanning the
bitmap.

2. A term proportional to the number of entries in the
table to be built, which is the same as the number of
zones of dead elements.

We further hypothesize that the performance of this phase
is independent of the size of the zones of dead elements.

We start by testing the last hypothesis. For that, we run
the function build-table above with two different bitmaps,
both containing 210 zones of dead objects and the same num-
ber of zones of live objects. In the first test, the size of each
live zone is a single word. In the second case, the size of
each live zone is 28 words. The result of this test is shown
in the following table:

Live zone size CPU time (ms)
1 1.0

28 1.0

As we can see, the hypothesis that the sizes of the zones do
not influence the performance of this phase is confirmed.

Next we tested the function build-table for different sizes
of the table to be built. The size of each live zone was a
single word. The following table shows the result:

Table size CPU time (ms)

21 1.0
29 1.0

211 1.0
213 1.1
215 1.4
217 1.2

It appears that the time to build the table is entirely dom-
inated by the time to traverse the bitmap. We have no
explanation as to why the time does not increase monotoni-
cally with the table size, but we have run this test numerous
times and we still get this surprising result. It appears that
this anomaly does not manifest itself on computers other
than ours.

With improved bitmap management code, we believe that
building the table will typically take about the same as com-
pacting the heap, i.e., around 0.3ms.

4.4 Phase 3, adjusting pointers
In the worst case, every live pointer must be updated, and
each such pointer requires n iterations to search the break
table, where n is the depth of that table. The number of



live pointers is the difference of the size of the heap and the
number of words required for the break table. In the worst
case, the number of words required for the break table is as
small as possible (which is 2n+1), so that the number of live
pointers is 2N − 2n+1. The total amount of work required
can therefore be expressed as n ·(2N −2n+1). When N = 19,
this function has a maximum for n = 15.

We can get an upper bound on the time to adjust the point-
ers by creating a heap with roughly 219 − 216 words con-
taining random values in some interval [0,K] followed by a
break table with 216 words, with addresses in the interval
[0,K + 1].

In order to search the break table, we used the following
binary search function:

(defun binary-search (heap first last address)
(declare (type (simple-vector #.*size*) heap)

(type (integer 0 (#.*size*))
first last address)

(optimize (speed 3) (debug 0) (safety 0)))
(let ((f first)

(l last))
(declare (type (integer 0 (#.*size*)) f l))
(loop until (= (- l f) 2)

do (let* ((mid (1+ (ash (ash (+ l f) -2) 1)))
(elt (svref heap mid)))

(declare (type fixnum elt))
(if (< address elt)

(setf l mid)
(setf f mid))))

(svref heap (1+ f))))

The following function was used to adjust the pointers of
the heap:

(defun adjust ()
(declare (optimize (speed 3) (debug 0) (safety 0)))
(loop with w = (worst-frontier 19)

with l = (1- (expt 2 19))
with g = *g*
for i from 0 below w
do (incf (aref *g* i)

(binary-search g w l i))))

On our computer, this function takes approximately 30ms
to run, again on a heap containing 219 words. While this
number may seem high, we should keep in mind that it is
pessimistic in several different ways:

• This test assumes that almost 90% of the heap is live.
When there are this many live objects, they will be
promoted, so a typical number should be significantly
less than 50%.

• It assumes that there are 215 dead zones, which would
make each zone very small. A more typical situation is
that dead zones are significantly larger, so that there
are significantly fewer dead zones.

• It assumes that every live word in the heap contains
a pointer that needs to be adjusted. More typically,

many words contain immediate data, or pointers to
older generations, and these pointers do not need to
be adjusted.

Furthermore, there is a simple optimization that we think
can eliminate a large fraction of the table searches. By keep-
ing the result (ai, di, and ai+1) between iterations and com-
paring the pointer to be adjusted to these values, we think
that in many cases we will get a hit, simply because it is
likely that two consecutive pointers belong to the same live
zone and refer to objects in that zone.

An educated guess, then, is that a typical value for this
phase would be closer to 5ms.

4.5 Overall performance
Taken together, the performance figures in the previous sec-
tion suggest that the entire compaction phase of our sug-
gested mark-and-compact sliding collector would take around
6ms on a fairly modest desktop, with an absolute worst-case
of around 30ms.

Including the mark phase, there are two possibilities:

• Compaction dominates over marking. Then the figures
given above are reasonable estimates of the total time
for the entire collection.

• Marking dominates over compaction. Then the figures
given above are sufficiently good that our method is no
more expensive than others such as mark-and-sweep
and copying.

In addition, we should not forget the reasons for choosing a
sliding collector in the first place:

• Compared to a copying collector, only half the space
is required, or, alternatively, the space available in the
nursery is twice as big. When this is the case, the
number of required collections decreases, a situation
which gives more time for short-lived objects to die,
thereby decreasing the total amount of work spent in
garbage collection.

• Also compared to a copying collector, the relative ages
of objects are kept intact, which decreases the risk of
promoting objects that will die soon after a collection.

• Compaction eliminates the potential problem of frag-
mentation.

All these factor contribute to decreasing the total cost of
garbage collection, although measuring the exact impact is
of course very hard.

It is not advisable to use our algorithm on the global heap,
say a heap that is three orders of magnitude larger than
the one used in our tests. Even multiplying our timing re-
sults by a thousand would imply a significant pause, but
since the break table requires a binary search, the time to



search it would be proportional to the logarithm of the size
of the heap, penalizing performance even more. To manage
a global heap, we would recommend the technique by Ker-
many et al [8], which has a greater overhead, but has the
advantage of being incremental, concurrent, and parallel,
thus effectively eliminating significant pauses.

One might want to speculate about the performance of our
algorithm when the size of the heap is significantly larger
than the size of the cache, but much smaller than the global
heap. Such a situation might be desirable if it turns out
that the cost of cache misses is compensated by the fact
that more time between collections will allow more objects
to die. For that reason, we re-ran our tests with a heap that
is 4 times the size of the heap used for the previous tests.
We observed a factor 10 slowdown compared to the tests re-
ported in this section. In order for this configuration to be
advantageous, the number of objects that die between two
garbage-collection cycles has to increase substantially, and
whether this is the case depends on the type of application
being executed. Only benchmarks in a final system or sim-
ulations with real allocation traces can determine whether
this is the case. Note, however, that even though overall
throughput might improve with a larger heap, the time for
an invocation of the garbage collector becomes closer to what
is tolerable for many so-called soft real time applications
such as generation of sound or images in real time.

5. CONCLUSIONS AND FUTURE WORK
We have presented an improvement to the compacting and
sliding collector invented by Haddon and Waite [4]. Our
method is an improvement in that it does not require the
partially built break table to be moved, because the entire
table is built after the compaction phase is finished.

While it is extremely difficult to compare performance of dif-
ferent methods for garbage collection, in order to get an indi-
cation of the performance of our method, we created a num-
ber of tests. We believe these tests show that the method
we suggest is not prohibitively expensive. The advantages of
compaction to overall performance of the garbage collector
are hard to measure or even estimate, but we think that they
will compensate for the slight increase in cost of compaction
compared to ordinary copying or mark-and-sweep.

We plan to use this algorithm in the per-thread nursery col-
lector in our system SICL.1 Inspired by the Multics system,
we plan to instrument the system with a number of meters
so that performance data can be collected at all times. Only
then will we be able to obtain a final verdict concerning the
performance of this method.
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