
SICL
Building blocks for creators of

Common Lisp implementations.

Robert Strandh

2013

ii

Contents

1 Introduction 1

I Portable modules 5

2 Reader 7

3 Printer 9

4 Pretty printer 11

5 The format function 13

6 The loop macro 15

6.1 Current state . 15
6.2 Protocol . 16

6.2.1 Package . 16
6.2.2 Classes . 16
6.2.3 Functions . 17

7 High-level functions on lists 19

8 Sequence functions 21

8.1 Current state . 21
8.2 Future work . 21

9 Hash tables 23

9.1 Package . 23
9.2 Protocol . 23

iii

iv CONTENTS

9.3 Implementation . 24
9.3.1 Hash table implemented as a list of entries 25

10 Type declarations of standard Common Lisp functions 27

11 Documentation strings for all Common Lisp symbols 29

12 Condition system 31

13 Arithmetic 33

14 Array 35

II System-speci�c modules 37

15 Data representation 39

15.1 Low-level tag bits . 39
15.2 Immediate objects . 40

15.2.1 Characters . 40
15.2.2 Single �oats . 40

15.3 Representation of cons cells . 41
15.4 Representation of standard objects 41
15.5 Flexible instances . 42
15.6 Funcallable standard objects . 43
15.7 Code objects . 44
15.8 Rigid instances . 46
15.9 Instances of built-in classes . 46

15.9.1 Instances of sequence 46
15.9.2 Arrays . 46
15.9.3 Symbols . 48
15.9.4 Packages . 48
15.9.5 Hash tables . 49
15.9.6 Streams . 49
15.9.7 Functions . 49

16 Environments 53

16.1 The global environment . 53
16.2 Global environment protocol . 55

CONTENTS v

16.3 The static runtime environment 66

16.4 Runtime information . 68

17 Object system 71

17.1 Classes of class metaobjects . 71

17.1.1 Standard classes . 72

17.1.2 Built-in classes . 73

17.1.3 Condition classes . 74

17.1.4 Structure classes . 75

17.2 Generic function dispatch . 76

17.2.1 Call history . 76

17.2.2 The discriminating function 78

17.2.3 Accessor methods . 80

17.3 Dealing with metastability issues 81

17.4 Implementing slot-value and (setf slot-value) 82

18 Setf expanders 83

19 Compiler 85

19.1 General description . 85

19.2 Di�erent uses of the compiler 85

19.3 Compilation phases . 86

19.3.1 Reading the source code 86

19.3.2 Conversion from CST to AST 88

19.3.3 Conversion from AST to HIR 88

19.3.4 HIR transformations . 89

19.3.5 Conversion from HIR to MIR 94

19.3.6 Conversion from MIR to LIR 98

19.3.7 Code generation . 101

19.3.8 Access to special variables and global functions 101

19.3.9 Access to array elements 102

19.3.10Access to slots of standard objects 103

19.4 Random thoughts . 103

20 Compiled �les 105

21 Cross compilation 107

21.1 General issues with cross compilation 107

vi CONTENTS

21.2 Environments . 108
21.3 Compile-time processing of standard macros 110

22 Bootstrapping 113

22.1 General technique . 113
22.2 Global environments for bootstrapping 114
22.3 Viable image . 115
22.4 Bootstrapping stages . 115

22.4.1 Stage 1, bootstrapping CLOS 115

23 Garbage collector 123

23.1 Global collector . 123
23.1.1 General description . 123
23.1.2 Idle phase . 125
23.1.3 Requesting roots . 125
23.1.4 Waiting for roots . 125
23.1.5 Mark . 125
23.1.6 Collecting unmarked dyads 127
23.1.7 Freeing unmarked racks 127
23.1.8 Merging free lists . 128
23.1.9 Clearing mark bits . 128
23.1.10Write barrier . 128
23.1.11Protocol . 128

23.2 Nursery collector . 129
23.2.1 General description . 129
23.2.2 Allocation . 130
23.2.3 Finding roots . 131
23.2.4 Mark phase . 139
23.2.5 Promotion phase . 140
23.2.6 Compaction phase . 142
23.2.7 Break table build phase 142
23.2.8 Pointer adjustment phase 142

23.3 Synchronization between collectors 143
23.3.1 Running application thread 144
23.3.2 Application thread about to block 144
23.3.3 Application thread waking up after block 145
23.3.4 Preparing for a global collection 145

23.4 Implementation . 147

CONTENTS vii

24 Debugger 149

25 Processing arguments 151

25.1 Calling error . 153
25.2 Checking the minimum argument count 153
25.3 Checking the maximum argument count 154
25.4 Initializing required parameters 155
25.5 Initializing optional parameters 156
25.6 Initializing keyword parameters to nil 156
25.7 Creating the &rest parameter 156
25.8 Initializing keyword parameters 160

25.8.1 Checking that the number of arguments is even 160
25.8.2 Initializing a single keyword parameter 160
25.8.3 Checking the presence of :allow-other-keys 164
25.8.4 Checking the validity of every keyword 164

26 Processing return values 167

26.1 Replacing the multiple-to-fixed-instruction 167
26.2 Replacing the fixed-to-multiple-instruction 169

III Backends 171

27 x86-64 173

27.1 Register usage . 173
27.2 Representation of function objects 174
27.3 Calling conventions . 174
27.4 Use of the dynamic environment 178
27.5 Transfer of control to an exit point 181
27.6 Address space layout . 182
27.7 Parsing keyword arguments . 182

28 HIR interpreter 183

IV Contributing to SICL 185

29 General Common Lisp style guide 187

29.1 Purpose of style restrictions . 187

viii CONTENTS

29.2 Width of a line of code . 188

29.3 Commenting . 188

29.4 Blank lines . 189

29.5 car, cdr, first, etc are for cons cells 189

29.6 Di�erent meanings of nil . 189

29.7 Tests in conditional expressions 191

29.8 General structure of recursive functions 191

29.9 Using car and cdr vs. using first and rest 192

30 SICL-speci�c style guide 195

30.1 Commenting . 195

30.2 Designators for symbol names 195

30.3 Docstrings . 196

30.4 Naming and use of slots . 196

30.5 Standard functions . 196

30.6 Standard macros . 197

30.7 Compiler macros . 197

30.8 Conditions and restarts . 198

30.9 Condition reporting . 199

30.10Internationalization . 199

30.11Package structure . 199

30.12Assertions . 200

30.13Threading and thread safety . 200

31 List of tasks of limited size 201

31.1 Implement hash tables . 201

31.1.1 Implementation using a list 202

31.1.2 Implementation using open hashing 202

31.1.3 Implementation using vector buckets 202

31.2 Implement streams . 202

31.3 Better error messages for the loop module 202

31.4 Better error messages by the lambda-list parser 203

V Appendices 205

A All standard macros 207

CONTENTS ix

B Removed systems 209

B.1 Stack-oriented C backend . 209
B.2 Concrete Common Lisp backend 209
B.3 Extrinsic HIR interpreter backend 210
B.4 Abstract machine backend . 210
B.5 X86 assembler . 210
B.6 Global system de�nition and associated package �le 210
B.7 File containing de�nitions of tag bits 210

C Memory allocator 211

C.1 Memory is divided into chunks 211
C.2 Bins of chunks of similar size 214
C.3 Linking a chunk into a bin . 215
C.4 Allocating a chunk . 216
C.5 Freeing a chunk . 217
C.6 Concurrency . 218

D Bootstrapping principles 219

D.1 General restrictions . 219
D.2 Object creation . 220
D.3 Checking the validity of initargs to make-instance 221
D.4 Object initialization . 221
D.5 Processing the defclass macro 221
D.6 Initialization of class metaobjects 223
D.7 Accessing slots . 224

Bibliography 225

Index 227

x CONTENTS

Chapter 1

Introduction

SICL (which doesn't mean anything in particular; pronounce it like �sickle�)
is a project with the purpose of creating a collection of highly-portable high-
performance �modules� for developers of Common Lisp systems. Such modules
include �standard libraries� such as high-level functions that operate on lists,
high-level functions that operate on sequences, the format function, the loop

macro, the read function, the pretty printer, etc. Other planned modules
include a module that provides localized docstrings for all of Common Lisp.

However, the modules are not limited to functionality that is directly provided
by the Common Lisp language speci�cation. An existing module de�nes a
CLOS protocol for managing �rst-class global environments, and another de-
�nes such a protocol for managing the contents of the compilation environment
during the early phases of compilation.

Furthermore, even though these modules are part of the SICL project, they
may not be present in the SICL repository. Whenever a module is su�ciently
independent of the rest of the SICL code base, we try to extract it into a
separate, independently maintained repository. A module for reading Common
Lisp source code as a concrete syntax tree and a highly programmable version
of the Common Lisp read function have already been extracted this way.

Initially, we planned to decrease the interdependence of modules as much as
possible by creating a partial order between the modules, thereby enabling an

1

2 CHAPTER 1. INTRODUCTION

implementation of a small subset of Common Lisp to become a fully compliant
implementation by adding these modules in some order. This goal turned out
to be unreasonable in that many modules would have to be written in a subset
of the full language, thereby making them less maintainable. Instead, we think
the most reasonable strategy for creating a new Common Lisp implementation
is to write it using the full language, and to bootstrap the new implementation
on an existing fully compliant implementation.

We think it is important that the code of SICL be of very high quality. To that
end, error messages should be as explicit as possible. Macros, for instance, do
extensive syntax analysis so as to prevent error messages from being phrased
in terms of expanded code.

To gain wide acceptance, SICL is distributed according to a two-clause BSD
license.

We also plan to use this collection of modules, together with additional speci�c
code, in order to produce a complete implementation of Common Lisp.

We think it is possible to improve on existing open-source Common Lisp sys-
tems in several ways, and we hope SICL will be able to accomplish that, pro-
vided that great care is taken to create code with a combination of character-
istics:

• The code is layered, so that di�erent Common Lisp implementations can
choose to include SICL modules that represent gaps in their system or
improvement on their existing code, without having to include parts for
which they prefer their own, implementation-speci�c code.

Upper layers contain code that is not performance critical. This code is
written entirely in Common Lisp. To avoid circular references, we specify
what lower-level Common Lisp primitives can be used to write functions
in the upper layer. If done well, code in this layer could be used by
all free Common Lisp implementations, which could save considerable
maintenance e�ort. Examples of functionality in this layer would be for-
matted output, pretty-printing, and macros that can expand to portable
Common Lisp code.

Intermediate layers contain code that needs careful tuning to obtain per-
formance, but where the tuning can be handled by writing di�erent ver-

3

sions of the code for di�erent cases. For instance, functions that work on
all kinds of sequences might have special versions for lists and vectors.
Similarly, such functions might have special versions for common values
of the :test (such as the Common Lisp functions #'eq, #'eql, etc.) and
:key arguments (such as #'identity, #'car, etc). These special cases
should be handled by using compiler macros.

Lower layers have to rely more and more on implementation-speci�c de-
tails, and require the introduction of implementation-speci�c primitives
to be used in implementations of standard Common Lisp constructs. We
might provide several di�erent versions of code in this layer for di�erent
low-level assumptions.

• The goal is for the code itself to be of very high quality. By this, we
do not only mean that it should be bug-free as much as possible, but
also that it should have good documentation strings and clear comments
when required. We want error messages to be as explicit as possible, and
to accomplish that we try to capture as many exceptional situations as is
possible without performance penalties. We use very speci�c conditions
that are subclasses of ones stipulated by the Common Lisp HyperSpec for
condition signaling, so as to allow for implementations to take advantage
of such speci�c conditions for better error reporting. Macro expansion
code should do everything possible to capture as many errors as possible
so that error reporting can be done in terms of code written by the
programmer, as opposed to in terms of expanded code.

4 CHAPTER 1. INTRODUCTION

Part I

Portable modules

5

Chapter 2

Reader

This entire chapter is obsolete. We intend to use the implementation-independent
reader Eclector, available at https://github.com/robert-strandh/Eclector.

7

8 CHAPTER 2. READER

Chapter 3

Printer

A large part of the printer can be written portably without performance penalty.
We intend to supply standard methods for print-object, and code for func-
tions such as princ, prin1, and print.

Initially, we were planning to use the method created by Burger and Dybvig
[BD96] to print �oating-point numbers so that they can be read back to the ex-
act same number. But more recent work [Ada18] claims even better techniques.
We need to compare these new techniques.

9

10 CHAPTER 3. PRINTER

Chapter 4

Pretty printer

Richard C Waters designed the pretty printer for Common Lisp ([Wat89],
[Wat92]). It may be possible to use it directly for SICL. Certainly, the ex-
istence of XP (i.e. what Waters designed) makes it low priority for SICL to
have its own.

As I recall, there are some minor di�erences between XP and what was ulti-
mately incorporated in the standard, but a long time has passed since I looked
at it.

I also do not recall the license according to which XP is distributed. It may or
may not be compatible with that of SICL. Finally, it may be that XP does not
conform to the SICL coding standards.

11

12 CHAPTER 4. PRETTY PRINTER

Chapter 5

The format function

The directory Code/Format contains a near-complete implementation of the
format function. What is missing is the printers for �oating-point numbers.
Also, the formatter function is not yet implemented.

We are planning to use the method created by Adams [Ada18] for printing
�oating-point numbers.

13

14 CHAPTER 5. THE FORMAT FUNCTION

Chapter 6

The loop macro

Our loop module uses all available Common Lisp functions for its analysis of
syntax and semantics. We believe this is not a problem, even though we assume
the existence of loop for many other modules, because the code in this module
will be executed during macro-expansion time, and for a new Common Lisp
system, it would be executed during cross compilation by another full Common
Lisp implementation.

Our loop module uses only standard Common Lisp code in its resulting ex-
panded code, so that macro-expanded uses of loop will not require any other
SICL module in order to work.

The code for the SICL loop macro is located in the directory Code/Loop.

For parsing a loop expression, we use a technique called combinatory pars-

ing, except that we do not handle arbitrary backtracking. Luckily, arbitrary
backtracking is not required to parse the fairly simple syntax of loop clauses.

6.1 Current state

All loop clauses have been tested with the test cases provided by Paul Dietz'
ANSI Common Lisp test suite.

15

16 CHAPTER 6. THE LOOP MACRO

Future work includes providing an alternative parser to be used when the nor-
mal parser fails. The purpose of the alternative parser is to provide good error
messages to the programmer.

6.2 Protocol

6.2.1 Package

The symbols documented in this section, and that are not in the package
common-lisp, are de�ned in the package named sicl-loop.

6.2.2 Classes

⇒ clause [Class]

This class is the base class for all clauses.

⇒ subclauses-mixin [Class]

This class is a superclass of all classes of clauses that accept the and loop

keyword.

⇒ var-and-type-spec-mixin [Class]

This class is a superclass of all classes of clauses and subclauses that take a
var-spec and a type-spec.

⇒ compound-forms-mixin [Class]

This class is a superclass of all classes of clauses that take a list of compound
forms.

⇒ loop-return-clause-mixin [Class]

This class is a superclass of all classes of clauses that can make the loop return
a value.

6.2. PROTOCOL 17

6.2.3 Functions

⇒ bound-variables clause [Generic Function]

The purpose of this generic function is to generate a list of all bound variables
in a clause. The same variable occurs as many times in the list as the number
of times it is bound in the clause.

⇒ accumulation-variables clause [Generic Function]

The purpose of this generic function is to generate a list of all the accumulation
variables in a clause. Each element of the list is itself a list of three elements.
The �rst element is the name of a variable used in an into clause, or nil if the
clause has no into. The second element determines the kind of accumulation,
and can be one of the symbols list, count/sum, or max/min. The third element
is a type speci�er which can be t.

⇒ declarations clause [Generic Function]

The purpose of this generic function is to extract a list of declaration speci�ers
from the clause. Notice that it is a list of declaration speci�ers, not a list of
declarations. In other words, the symbol declare is omitted.

⇒ initial-bindings clause [Generic Function]

The purpose of this generic function is to extract the outermost level of bindings
required by the clause.

⇒ final-bindings clause [Generic Function]

The purpose of this generic function is to extract the innermost level of bindings
required by the clause.

⇒ bindings clause [Generic Function]

The default method of this generic function appends the result of calling
initial-bindings and that of calling final-bindings.

18 CHAPTER 6. THE LOOP MACRO

Chapter 7

High-level functions on lists

This module is meant to be a complete implementation of portable functions
and macros in the Conses dictionary (chapter 14 in the HyperSpec), except for
the low-level functions such as cons, car, cdr, rplaca, and rplacd which can
not be implemented portably. For its implementation, it uses the loop macro.
If any other functionality is required, it will supply special implementations of
such functionality, so as to avoid dependencies on other modules.

We obtain high performance by identifying important special cases such as the
use of :test function eq, or equal, or the use of a :key of identity.

We supply compiler macros so as to avoid runtime dispatch whenever a special-
case function can be determined by only looking at the call site. This ensures
high performance for short lists, where argument parsing would otherwise rep-
resent a signi�cant fraction of the cost of the call.

We are considering whether it might be worthwhile to supply a macroexpanded
version of this module so that no existing implementation of the loop macro
would be required.

This module is fairly complete, and it includes macros such as push and pop

as well as compiler macros for functions that take keyword arguments such as
the mapping functions.

The module also includes de�nitions of speci�c conditions that are used by this

19

20 CHAPTER 7. HIGH-LEVEL FUNCTIONS ON LISTS

module, together with condition reporters in English for those conditions. It
also includes English-language documentation strings for some of the functions.

Chapter 8

Sequence functions

This module provides high-performance implementations of the functions in
the �sequences� chapter of the HyperSpec. High performance will be obtained
by identifying important special cases such as the use of :test function eq, or
equal, or the use of a :key of identity.

8.1 Current state

In an attempt to make the functions as fast as possible, we created lots of di�er-
ent specialized versions for common cases of keyword arguments. Preliminary
tests show that we improve on the speed compared to existing commonly used
implementations of Common Lisp. However, the existence of all those special
cases also makes the module hard to read and di�cult to test.

For that reason, we plan to rewrite this module, using an alternative strategy.

8.2 Future work

Work is in progress using the techniques in our paper at ELS 2017 [DS17].
These techniques work well for most of the sequence functions such as find,
position, etc.

21

22 CHAPTER 8. SEQUENCE FUNCTIONS

Concerning the sorting functions (i.e., sort and stable-sort) there is an in-
teresting challenge with respect to �nding a stable sorting algorithm for vectors
that uses little extra space. The naive version of mergesort uses O(n) extra
space, but some research ([HL90], [HL88], [KPT96]) indicates that it is possible
to obtain an in-place stable version of mergesort. Since mergesort is typically
signi�cantly faster than quicksort, this would be a worthwhile direction to pur-
sue.

Chapter 9

Hash tables

9.1 Package

The package for all symbols in this chapter is sicl-hash-table.

9.2 Protocol

Every class in this section has built-in-class as its metaclass.

⇒ hash-table [Class]

This class is the base class of all hash tables. It is a subclass of the class t.

⇒ hash-table-p hash-table [Generic Function]

This generic function returns a generalized Boolean value, where a true value
indicates that hash-table is an instance of the class hash-table, and false

indicates that hash-table is not an instance of the class hash-table.

⇒ hash-table-count hash-table [Generic Function]

This generic function returns a non-negative integer indicating the number of
entries in hash-table.

⇒ gethash key hash-table &optional default [Generic Function]

23

24 CHAPTER 9. HASH TABLES

This generic function returns two values. The �rst value is the value in hash-

table associated with key, or nil if no value in hash-table is associated with key.
The second value is a generalized Boolean value, where a true value indicates
that the �rst value is indeed present in hash-table, and false indicates that no
value is associated with key in hash-table.

⇒ (setf gethash) new-value key hash-table &optional default [Generic Function]

⇒ hash-table-test hash-table [Generic Function]

⇒ remhash key hash-table [Generic Function]

This generic function removes the entry associated with key in hash-table. It
returns a true value an entry associated with key existed and was removed.
Otherwise, it returns false.

9.3 Implementation

⇒ eq-hash-table-mixin [Class]

This mixin class is a superclass of every hash tables class that uses eq as its
test function. It is a subclass of the class t.

⇒ hash-table-test (hash-table eq-hash-table-mixin) [Method]

This method returns the symbol eq.

⇒ eql-hash-table-mixin [Class]

This mixin class is a superclass of every hash tables class that uses eql as its
test function. It is a subclass of the class t.

⇒ hash-table-test (hash-table eql-hash-table-mixin) [Method]

This method returns the symbol eql.

⇒ equal-hash-table-mixin [Class]

This mixin class is a superclass of every hash tables class that uses equal as
its test function. It is a subclass of the class t.

⇒ hash-table-test (hash-table equal-hash-table-mixin) [Method]

This method returns the symbol equal.

9.3. IMPLEMENTATION 25

⇒ equalp-hash-table-mixin [Class]

This mixin class is a superclass of every hash tables class that uses equalp as
its test function. It is a subclass of the class t.

⇒ hash-table-test (hash-table equalp-hash-table-mixin) [Method]

This method returns the symbol equalp.

⇒ standard-hash-table [Class]

This class is a subclass of the class hash-table.

⇒ :contents [Initarg]

This initialization argument is accepted by all instances of standard-hash-table

⇒ contents standard-hash-table [Generic Function]

Given an instance of the class standard-hash-table, this generic function
returns the value that was supplied as the :contents initialization argument
when the instance was created.

9.3.1 Hash table implemented as a list of entries

⇒ list-hash-table [Class]

This class is a subclass of the class standard-hash-table. It provides and
implementation of the protocol where the entries are stored as an association
list where the key is the car of the element in the list and the value is the cdr
of the element in the list.

⇒ gethash key (hash-table list-hash-table) &optional default [Method]

This method calls the generic function contents with hash-table as an argu-
ment to obtain a list of entries of hash-table. It also calls the generic function
hash-table-test with hash-table as an argument to obtain a function to be
used to compare the keys of the entries to key. It then calls the standard
Common Lispfunction assoc, passing it key, the list of entries, and the test
function as the value of the keyword argument :test. If the call returns a
non-nil value (i.e. a valid entry), then the method returns two values, the cdr
of that entry and t. Otherwise, the method return nil and nil.

26 CHAPTER 9. HASH TABLES

Chapter 10

Type declarations of standard

Common Lisp functions

This module contains portable type declarations for all standard Common Lisp
functions. It could be used by implementers of Common Lisp compilers to
accomplish error checking and type inferencing.

27

28CHAPTER 10. TYPE DECLARATIONS OF STANDARD COMMON LISP FUNCTIONS

Chapter 11

Documentation strings for all

Common Lisp symbols

As mentioned elsewhere, we believe that documentation strings should be sep-
arate from code, because they do not address the same audience. In addition,
separating the two allows us to distribute the documentation strings as a sepa-
rate module. Many implementations have substandard documentation strings,
so this is an important module that can be used as a drop-in replacement for
existing ones.

We will provide the infrastructure for allowing internationalization of documen-
tation strings, but we probably will not provide di�erent versions for di�erent
languages.

29

30CHAPTER 11. DOCUMENTATION STRINGS FOR ALL COMMON LISP SYMBOLS

Chapter 12

Condition system

This module is located in the Code/Conditions directory. It it meant to con-
tain the complete Common Lisp condition system. The module is fairly com-
plete. There are three main items in this module:

• A complete portable implementation of the Common Lisp condition sys-
tem signaling mechanism.

• De�nitions of standard Common Lisp conditions.

• De�nitions of additional SICL conditions.

As it turns out, the Common Lisp condition signaling mechanism can be im-
plemented in a completely portable way, using only special variables as the
underlying mechanism. In addition, this implementation method is likely to
exhibit acceptable performance, because condition signaling is assumed to be
fairly infrequent anyway.

The module assumes the existence of the define-condition macro. The full
hierarchy of Common Lisp conditions is implemented, and there is a �le con-
taining condition reporters for those conditions when the English language is
used.

The additional conditions are used by various SICL modules. At the moment,
this module does not contain all additional conditions used by the system.

31

32 CHAPTER 12. CONDITION SYSTEM

We are still undecided concerning whether all additional conditions should be
concentrated in one place, or on the contrary, they should be distributed with
the particular module that uses them. The �rst solution favors sharing of
conditions that are usable by several modules, and the second solution lets
the user of a module install only the conditions used by that module, without
having to install a large number of conditions that will never be used.

Chapter 13

Arithmetic

The code for arithmetic functions is contained in the directory Code/Arithmetic.
At the moment, this code is very preliminary. There is not even a package def-
inition for the package used in the �le arithemtic.lisp.

The code contains de�nitions of the functions +, -, *, and /. These functions
call binary versions also de�ned in the same �le. There are also compiler macros
to turn calls to these functions with a known number of arguments into calls
to the binary versions.

The binary versions of the arithmetic functions dispatch according to the exact
type of the arguments to binary versions of the function with a speci�c combi-
nation of types, but those speci�c functions have not yet been written. Some
of those functions can be written using portable code, but most of them will
probably use machine-speci�c low-level instructions.

We have no speci�c advice for anyone who might be interested in working on
code for arithmetic functions.

33

34 CHAPTER 13. ARITHMETIC

Chapter 14

Array

There are a few things that can be done in a portable module for arrays.

Clearly, array-dimensions can be de�ned in terms of array-rank and array-dimension.
On the other hand, it can also be done the other way around, i.e., array-rank
can be computed as the length of the list returned by array-dimensions, and
array-dimension can be de�ned using the list returned by array-dimensions

and elt, or nth. Whether one or the other is chosen depends on how arrays are
represented. In SICL the list of dimensions is already stored in the array (See
Section 15.9.2.), so the second solution is better, and it also avoids consing.

array-total-size can be de�ned in terms of array-rank and array-dimension,
or in terms of and array-dimensions depending on what solution was chosen
above.

Furthermore, aref and (setf aref) can be de�ned in terms of row-major-aref
and (setf row-major-aref).

It might be worthwhile de�ning a compiler macro for aref.

At the moment, there is some experimental code for arrays in the directory
Code/Array, but it is probably best to do it over from scratch.

35

36 CHAPTER 14. ARRAY

Part II

System-speci�c modules

37

Chapter 15

Data representation

15.1 Low-level tag bits

The three least signi�cant bits of a machine word are used to represent four
di�erent tags as follows:

• 000, 010, 100, 110. These tags are used for �xnums. The bits except
the last one represent integer in two's complement representation. On a
64-bit machine, a �xnum is thus in the interval [2−62, 262 − 1].

• 001. This tag is used for cons cells. A pointer to a cons cell is thus a
pointer aligned to a double word to which the machine integer 1 has been
added. See Section 15.3 for more information about the representation
of cons cells.

• 011. This tag is used for various immediate objects, and in particular for
characters. (See Section 15.2.)

• 101. This tag is used for all heap-allocated Common Lisp objects other
than cons cells. A heap allocated object like this is a standard object. It
is represented by a two-word header object with one word containing a
tagged pointer to the class object and the other word containing a tagged
pointer to the rack. See Section 15.4 for more information about the
representation of standard objects.

39

40 CHAPTER 15. DATA REPRESENTATION

• 111. This tag is used to tag a pointer to a rack. Notice that a rack is
not a �rst-class Common Lisp object, so it can not be the value of any
variable, slot, or argument.

On a 64-bit machine, �oats of type short-float and single-float are repre-
sented as immediate values.

15.2 Immediate objects

Immediate objects are all objects with 011 in the lower three bits. Two more
bits are used to distinguish between di�erent kinds of immediate objects, giving
the following �ve low bits:

• 00011. This tag is used for Unicode characters. When shifted �ve posi-
tions to the right, the value gives the Unicode code point.

• 01011. This tag is used short �oats.

• 10011. This tag is used for single �oats (64-bit platforms only).

• 11011. This tag is unused.

15.2.1 Characters

As indicated above, the low �ve bits of a character have the value 00011, and
the corresponding Unicode code point is obtained by shifting the value of the
character �ve positions to the right.

We currently do not plan to supply a module for Unicode support. Instead we
are relying on the support available in the Unicode library by Edi Weitz.

15.2.2 Single �oats

On a 64-bit platform, a single �oat corresponds to a single-precision IEEE
�oating-point value. The value is stored in the most-signi�cant half of the
word.

15.3. REPRESENTATION OF CONS CELLS 41

15.3 Representation of cons cells

A cons cell is represented as two consecutive machine words aligned on a
double-word boundary.

15.4 Representation of standard objects

Recall that a standard object is a heap allocated object that is not a cons cell.
All standard objects are represented in (at least) two parts, a header object and
a rack. The header object always consists of two consecutive words aligned on
a double-word boundary (just like cons cells). The �rst word always contains
a tagged pointer to a class object (which is another standard object). The
second word contains a tagged pointer (with tag 111) to the �rst word of the
rack.

The �rst entry of the rack of every standard object is a small �xnum called
the stamp of the standard object. The stamp is the unique class number of
the class of the general instance as it was when the instance was created. The
main purpose of this information is to be used in generic function dispatch. It
is also used to determine whether a standard object is an obsolete instance (in
this case the stamp of the standard object will not be the same as the current
unique class number of the class of the standard object). Standard objects that
can become obsolete are said to be �exible.

One advantage of representing standard objects this way is that the rack is
internally consistent. To explain what we mean by this concept, let us take
an adjustable array as an example. The implementation of aref must check
that the indices are valid, compute the o�set of the element and then access
the element. But in the presence of threads, between the index check and the
access, some other thread might have adjusted the array so that the indices are
no longer valid. In most implementations, to ensure that aref is thread safe,
it is necessary to prevent other threads from intervening between the index
check and the access, for instance by using a lock. In SICL, adjusting the array
involves creating a new rack with new dimensions, and then with a single store
instruction associate the new rack with the array. The implementation of aref
would then initially obtain a pointer to the rack and then do the index check,

42 CHAPTER 15. DATA REPRESENTATION

the computation of the o�set, and the access without risking any interference.
No locking is therefore required. Another example is a generic function. When
a method is added or deleted, or when a new sequence of argument classes is
seen, the generic function must be destructively updated. Normally, this op-
eration would require some locking primitive in order to prevent other threads
from invoking a partially updated generic function. In SICL, to update a
generic function this way, a new rack would be allocated and the modi�cations
would be made there, leaving the original generic function intact until the �nal
instruction to store a reference to the the new rack in the header object.

A standard object can be rigid or �exible. A rigid instance is an instance of
a class that can not change, typically a system class. A �exible instance is an
instance of a class that may be modi�ed, makings its instances obsolete. In
SICL, structure objects are �exible too.

In the following sections we give the details of the representation for all possible
standard objects.

15.5 Flexible instances

A �exible instance must allow for its class to be rede�ned, making it necessary
for the instance to be updated before being used again. The standard speci�-
cally allows for these updates to be delayed and not happen as a direct result of
the class rede�nition. They must happen before an attempt is made to access
some slot (or some other information about the slots) of the instance. It is un-
desirable to make all instances directly accessible from the class, because such
a solution would waste space and would have to make sure that memory leaks
are avoided. We must thus take into account the presence of obsolete instance

in the system, i.e. instances that must be updated at some later point in time.

The solution is to store some kind of version information in the rack so that
when an attempt is made to access an obsolete instance, the instance can �rst
be updated to correspond to the current de�nition of its class. This version
information must allow the system to determine whether any slots have been
added or removed since the instance was created. Furthermore, if the garbage
collector traces an obsolete instance, then it must either �rst update it, or
the version information must allow the garbage collector to trace the obsolete

15.6. FUNCALLABLE STANDARD OBJECTS 43

version of the instance. Our solution allows both. We simply store a reference
to the list of e�ective slots that the class of the instance de�ned when the
instance was created. This reference is stored as the second word of the rack
(recall that the �rst word is taken up by the stamp).

This solution makes it possible to determine the layout of the rack of an obsolete
instance, so that it can be traced by the garbage collector when necessary. This
solution also allows the system to determine which slots have been added and
which slots have been removed since the instance was created. In order to
detect whether an object is obsolete, the contents of the �rst word of the rack
(i.e. the stamp) is compared to the class unique number of the class of the
object. However, this test is performed automatically in most cases, because
when an obsolete object is passed as an argument to a generic function, the
automation of the discriminating function of the generic function will fail to �nd
an e�ective method, triggering an update of the object. (See Section 17.2.2.)

15.6 Funcallable standard objects

By de�nition, a funcallable standard object is an instance of a subclass of the
class funcallable-standard-object which is itself a subclass of the class
standard-object and of the class function. (See Section 15.9.7.)

To make function invocation fast, we want every subclass of the class function
to be invoked in the same way, i.e. by loading the static environment into a
register and then transferring control to the entry point of the function. The
static environment and the entry point are stored in the function object and
are loaded into registers as part of the function-call protocol.

When the funcallable standard object is a generic function, invoking it amounts
to transferring control to the discriminating function. However, the discrimi-
nating function can not be the generic function, because the CLOS speci�cation
requires that the discriminating function of a generic function can be replaced,
without changing the identity of the generic function itself. Furthermore, the
discriminating function does not have to be stored in a slot of the generic func-
tion, because once it is computed and installed, it is no longer needed. In
order for the generic function itself to behave in exactly the same way as its
discriminating function, whenever a new discriminating function is installed,

44 CHAPTER 15. DATA REPRESENTATION

the entry point and the static environment are copied from the discriminating
function to the corresponding slots of the generic function itself.

15.7 Code objects

A code object is a standard object that represents the code of a function. Recall
that a function consists of some code and an environment. The code object is
common to all functions that share the same code.

The tables described below that are meant for the garbage collector have en-
tries only for the values of the program counter corresponding to function
calls. At every safe point the thread tests the �ag gc-requested described in
Section 23.3. If that �ag is set, a function call is made to the local garbage
collector. Therefore, every safe point corresponds to a function call, and thus
the information is needed by the garbage collector only at function calls.

A code object contains the following information:

• The executable native instructions in the form of a vector of unsigned
bytes.

• Tables providing support for commands of the debugger. See below for
more detailed information about these tables.

• A hash table mapping a value of the program counter to a frame map.
A frame map is a bitmap containing information that is used by the
garbage collector to determine which stack locations contain Common
Lisp objects that should be traced. Stack locations containing data owned
by the current function invocation are present in the table. A frame
map never contains a stack location used to store a callee-saves register,
because whether such a location contains a Common Lisp object or some
other datum is determined by the caller of the current function. The
compiler may omit stack locations that are known to contain immediate
Common Lisp objects that the garbage collector does not have to trace.
For a typical backend, index i of the bitmap represents the stack location
at address b− i where b is the value of the base pointer.

15.7. CODE OBJECTS 45

• A hash table mapping a value of the program counter to a callee-saves

register map. This map is a bitmap which has as many elements as there
are callee-saves registers. A bit in the bitmap is set if the corresponding
callee-saves register contains a Common Lisp object that may need to be
traced by the garbage collector. The compiler may put a cleared bit in
the bitmap for a register known to contain an immediate Common Lisp
object that the garbage collector does not need to trace.

• A hash table mapping a value of the program counter to a callee-saves

stack map. This map is indexed by a callee-saved register and contains
a stack location in which the contents of the saved register was stored
before the current function could use the register. For a typical backend
such as x86-64, the entries in the table represent the registers RBX (index
0), R12 (index 1), R13 (index 2), R14 (index 3), and R15 (index 4) as
described in Section 27.1. The value of an entry represents the value
to subtract from the value of the base pointer in order to get the stack
location of the saved register. A value of 0 indicates that the register
is not used by this function at this program point, i.e. either current
function did not save the register, or it restored the register after having
�nished using it,

• A vector of strings representing the source code of the compilation unit
of which this code object is part. Each string corresponds to a line of
code.

• Information about the �le that contains the source code of the compila-
tion unit of which this code object is part.

• The concrete syntax tree corresponding to the source code of the compi-
lation unit of which this code object is part.

The following tables are used for debugger support:

• A table mapping source locations (i.e. line and column information cor-
responding to the location in the source code of the expression being
evaluated) to values of the program counter. When the user of the de-
bugger sets a breakpoint at a particular source location, the debugger
uses this information to determine a value of the program counter at
which the program should stop its execution.

46 CHAPTER 15. DATA REPRESENTATION

• A table mapping values of the program counter to variable liveness in-

formation.

15.8 Rigid instances

Contrary to �exible instances, a rigid instance is an instance of a class that is
not allowed to change after the �rst instance is created. Some system classes
are examples of such classes. The class de�nition might change as long as
there are no instances, but the consequences are unde�ned if a system class is
changed after it has been instantiated.

15.9 Instances of built-in classes

The only direct instances of built-in classes are �xnums, characters, short �oats,
single �oats, and cons cells.

15.9.1 Instances of sequence

The system class sequence can not be directly instantiated. Instead, it serves
as a superclass for the classes list and vector.

The HyperSpec is a bit contradictory here, because in some places it says
that list and vector represent an exhaustive partition of sequence1 but in
other places it explicitly allows for other subtypes of sequence.2 The general
consensus seems to be that other subtypes are allowed.

15.9.2 Arrays

Arrays are standard objects. As a consequence, the exact layout of the rack of
an array is determined by the MOP machinery for computing the slots when
the class is �nalized. All arrays are simple.

1See for instance section 17.1
2See the de�nition of the system class sequence.

15.9. INSTANCES OF BUILT-IN CLASSES 47

Every array class has a slot dimensions that contains a list of dimensions. The
length of the list is the rank of the array.

The element-type is determined by the exact subclass of the array class. The
elements follow the explicit slots in the rack. The size of the rack is rounded
up to the nearest multiple of a word.

All arrays are adjustable thanks to the split representation with a header object
and a rack. Adjusting the array typically requires allocating a new rack.

Specialized array classes with the following element types are provided:

• double-float

• (unsigned-byte 64).

• (signed-byte 64).

• (unsigned-byte 32).

• (signed-byte 32).

• (unsigned-byte 8), used for code, interface with the operating system,
etc.

• character (i.e. strings) as required by the HyperSpec.

• bit, as required by the HyperSpec.

Since the element type determines where an element is located and how to
access it, row-major-aref and (setf row-major-aref) are generic functions

that specialize on the type of the array.

System class vector

A vector is a one-dimensional array. As such, a vector has a rack where
dimensions slot contains a proper list of a single element, namely the length

of the vector represented as a �xnum.

All vectors have a slot for the �ll pointer. This slot contains nil for vectors
without a �ll pointer.

48 CHAPTER 15. DATA REPRESENTATION

System class string

Tentatively, we think that there is no need to optimize strings that contain
only characters that could be represented in a single byte.

15.9.3 Symbols

A symbol is a standard object. It has slots containing the following data:

1. The name of the symbol. The value of this slot is a string.

2. The package of the symbol. The value of this slot is a package or NIL if
this symbol does not have a package.

Notice that the symbol does not contain its value as a global variable, nor does
it contain its de�nition as a function in the global environment. Instead, this
information is contained in an explicit global environment object.

Notice also that the symbol does not contain the property list associated with
it. This information is also kept separately in an explicit global environment

object.

See Section 16.1 for more information on global environments.

15.9.4 Packages

A package is a standard object with the following slots:

1. The name of the package. The value of this slot is a string.

2. The nicknames of the package. The value of this slot is a list of strings.

3. The use list of the package. The value of this slot is a proper list of
packages that are used by this package.

4. The used-by list of the package. The value of this slot is a proper list of
packages that use this package.

15.9. INSTANCES OF BUILT-IN CLASSES 49

5. The external symbols of the package. The value of this slot is a proper
list of symbols that are both present in and exported from this package.

6. The internal symbols of the package. The value of this slot is a proper
list of symbols that are present in the package but that are not exported.

7. The shadowing symbols of the package. The value of this slot is a proper
list of symbols.

15.9.5 Hash tables

15.9.6 Streams

15.9.7 Functions

Ordinary (non-generic) SICL functions are instances of the class named simple-
function. The class simple-function is a direct subclass of funcallable-
standard-object. These two symbols both have the package sicl-clos as
their home package.

In order to obtain reasonable performance, we represent functions in a some-
what complex way, as illustrated by Figure 15.1.

Figure 15.1 shows two functions. The two functions were created from the same
compilation unit, because they share the same code object. (See Section 15.7.)

A function is represented as a two-word header (as usual) and a rack with three
slots:

1. The obligatory stamp.

2. An environment, which is the lexical environment in which the function
was de�ned. We are not giving the details of how the static environment
is represented here.

3. The entry point. The entry point is a raw address of an aligned word
in the vector containing the instructions of the function. Functions are
always allocated in the global heap, so the code vector never moves.
Therefore, this address will never need to be updated.

50 CHAPTER 15. DATA REPRESENTATION

Code

object

Code

size

class

rack

object

class

class

Raw address (word aligned)

stamp

stamp

Function

Static environment Code

vector

class

stamp

stamp

Raw ordinary rack pointer

Ordinary tagged pointer

Figure 15.1: Representation of functions.

15.9. INSTANCES OF BUILT-IN CLASSES 51

The static environment contains the code object as one of its elements.

Since raw addresses are word aligned, they show up as fixnums when inspected
by tools that are unaware of their special signi�cation.

For a generic function, the description of the slots above applies both to the
generic function object itself and to the discriminating function of the generic
function. In addition to these slots, a generic function also contains other slots
holding the list of its methods, and other information.

When a function is called, there are several possible situations that can occur:

• The most general case is when an object of unknown type is given as an
argument to funcall. Then no optimization is attempted, and funcall

is responsible for determining whether the object is a function, a name
that designates a function, or an object that does not designate a function
in which case an error is signaled.

• When it can be determined statically that the object called is a function
(i.e. its class is a subclass of the class function), but nothing else is know
about it, then an external call is made. Such a call consists of copying the
contents of the static environment slot to the predetermined place speci�c
to the backend, and then to issue a call instruction (or equivalent) to the
address indicated by the entry point slot of the function object. When a
function is called using a name known at compile time, then the object
is known to be a function, though it may be a function that signals an
error because the intended function is unde�ned.

• When it can be determined statically that the object being called is
a function object in the same compilation unit as the caller, then we
can make an internal call. If both the caller and the callee are global

functions (so that the static environment contains only a pointer to the
code object, then it su�ces to issue a call instruction (or equivalent) to
a relative address that can be determined statically. The relative address
can be chosen so as to avoid type checking of arguments with known
types. However, we may not take advantage of this possibility unless the
speed optimize quality is high, because it makes it impossible to rede�ne
a single function in a compilation unit.

52 CHAPTER 15. DATA REPRESENTATION

Chapter 16

Environments

Common Lisp has a concept of environments, and in fact several di�erent en-
vironments and several di�erent kinds of environment are mentioned in the
HyperSpec. However, Common Lisp does not mandate any particular repre-
sentation of these environments, nor does it mention any particular operations
on environments other than the implicit operations of de�ning functions, vari-
ables, macros, types, etc.

16.1 The global environment

In many Common Lisp systems the global environment is spread out in that
it does not have an explicit de�nition as a data type. Parts of it, such as the
set of packages or the set of classes, might be contained in global locations.
Other parts of it may be stored in symbols such as the value or the function
de�nition of a symbol. The standard speci�cally allows for this kind of spread-
out representation.

In SICL, we prefer to have an explicit representation of the global environment
as a data object. By doing it this way, we can allow for any number of global
environments present in the system at any point in time. Di�erent global
environments can have a di�erent set of packages, a di�erent set of classes, a
di�erent set of types, etc. This representation can give us several interesting

53

54 CHAPTER 16. ENVIRONMENTS

advantages:

• We might ensure that there is always a sane environment present in case
some environment gets destroyed (by a user accidentally removing some
essential system function, for instance).

• We can allow for several di�erent packages with the same name to ex-
ist in a system, as long as they are present in di�erent environments,
which would allow for simpler experimentation with di�erent versions of
packages.

• We can use di�erent environments for bootstrapping purposes, avoiding
con�icts with existing packages when a new system is built.

• By having the compiler work against such a �rst-class environment, we
can bootstrap from any existing Common Lisp implementation. All that
is needed is an implementation of the environment protocol for that im-
plementation.

• We could even imagine a multi-user system based on di�erent environ-
ments, and we could then allow users to do things such as de�ning :after
methods on print-object that are private to that user.

• etc.

A global environment in SICL would then contain:

• A set of packages, represented either as a list or as a hash table mapping
names to packages.

• A dictionary of classes, represented either as an association list or as a
hash table mapping names to classes.

• Amapping from function names to entries representing functions, macros,
compiler macros, and special operators.

• A mapping from names to entries representing type de�nitions.

• A mapping from names to entries representing dynamic variables.

16.2. GLOBAL ENVIRONMENT PROTOCOL 55

• Values of constant variables.

• A set of proclamations concerning types of variables and functions, but
also autonomous proclamations such as optimize and declaration.

• A mapping from names to method combinations.

• etc.

For a complete protocol that gives all the functionality provided by a global
environment, see Section 16.2.

16.2 Global environment protocol

⇒ environment [Class]

This class is the base class for all �rst-class global environments.

⇒ fboundp function-name environment [Generic Function]

This generic function is a generic version of the Common Lisp function fboundp.

It returns true if function-name has a de�nition in environment as an ordinary
function, a generic function, a macro, or a special operator.

⇒ fmakunbound function-name environment [Generic Function]

This generic function is a generic version of the Common Lisp function named
fmakunbound.

This function makes function-name unbound in the function namespace of en-
vironment.

If function-name already has a de�nition in environment as an ordinary func-
tion, as a generic function, as a macro, or as a special operator, then that
de�nition is lost.

If function-name has a setf expander associated with it, then that setf ex-
pander is lost.

⇒ special-operator function-name environment [Generic Function]

56 CHAPTER 16. ENVIRONMENTS

If function-name has a de�nition as a special operator in environment, then
that de�nition is returned. The de�nition is the object that was used as an
argument to (setf special-operator). The exact nature of this object is
not speci�ed, other than that it can not be nil. If function-name does not
have a de�nition as a special operator in environment, then nil is returned.

⇒ (setf special-operator) new function-name environment [Generic Function]

Set the de�nition of function-name to be a special operator. The exact nature
of new is not speci�ed, except that a value of nil means that function-name

no longer has a de�nition as a special operator in environment.

If a value other than nil is given for new, and function-name already has a
de�nition as an ordinary function, as a generic function, or as a macro, then
an error is signaled. As a consequence, if it is desirable for function-name to
have a de�nition both as a special operator and as a macro, then the de�nition
as a special operator should be set �rst.

⇒ fdefinition function-name environment [Generic Function]

This generic function is a generic version of the Common Lisp function named
cl:fdefinition.

If function-name has a de�nition in the function namespace of environment

(i.e., if fboundp returns true), then a call to this function succeeds. Otherwise
an error of type undefined-function is signaled.

If function-name is de�ned as an ordinary function or a generic function, then
a call to this function returns the associated function object.

If function-name is de�ned as a macro, then a list of the form (cl:macro-function

function) is returned, where function is the macro expansion function associ-
ated with the macro.

If function-name is de�ned as a special operator, then a list of the form
(cl:special object) is returned, where the nature of object is currently not
speci�ed.

⇒ (setf fdefinition) new-def function-name environment [Generic Function]

16.2. GLOBAL ENVIRONMENT PROTOCOL 57

This generic function is a generic version of the Common Lisp function named
(setf cl:fdefinition).

new-def must be an ordinary function or a generic function. If function-name

already names a function or a macro, then the previous de�nition is lost. If
function-name already names a special operator, then an error is signaled.

If function-name is a symbol and it has an associated setf expander, then that
setf expander is preserved.

⇒ macro-function symbol environment [Generic Function]

This generic function is a generic version of the Common Lisp function named
cl:macro-function.

If symbol has a de�nition as a macro in environment, then the corresponding
macro expansion function is returned.

If symbol has no de�nition in the function namespace of environment, or if the
de�nition is not a macro, then this function returns nil.

⇒ (setf macro-function) new-def symbol environment [Generic Function]

This generic function is a generic version of the Common Lisp function (setf

cl:macro-function).

new-def must be a macro expansion function or nil. A call to this function
then always succeeds. A value of nil means that the symbol no longer has
a macro function associated with it. If symbol already names a macro or a
function, then the previous de�nition is lost. If symbol already names a special
operator, that de�nition is kept.

If symbol already names a function, then any proclamation of the type of that
function is lost. In other words, if at some later point symbol is again de�ned
as a function, its proclaimed type will be t.

If symbol already names a function, then any inline or notinline proclama-
tion of the type of that function is lost. In other words, if at some later point
symbol is again de�ned as a function, its proclaimed inline information will be
nil.

If symbol has an associated setf expander, then that setf expander is pre-

58 CHAPTER 16. ENVIRONMENTS

served.

⇒ compiler-macro-function function-name environment [Generic Function]

This generic function is a generic version of the Common Lisp function named
cl:compiler-macro-function.

If function-name has a de�nition as a compiler macro in environment, then the
corresponding compiler macro function is returned.

If function-name has no de�nition as a compiler macro in environment, then
this function returns nil.

⇒ (setf compiler-macro-function)

new-def function-name environment [Generic Function]

This generic function is a generic version of the Common Lisp function (setf

cl:compiler-macro-function).

new-def can be a compiler macro function or nil. When it is a compiler macro
function, then it establishes new-def as a compiler macro for function-name

and any existing de�nition is lost. A value of nil means that function-name

no longer has a compiler macro associated with it in environment.

⇒ function-type function-name environment [Generic Function]

This generic function returns the proclaimed type of the function associated
with function-name in environment.

If function-name is not associated with an ordinary function or a generic func-
tion in environment, then an error is signaled.

If function-name is associated with an ordinary function or a generic function
in environment, but no type proclamation for that function has been made,
then this generic function returns t.

⇒ (setf function-type) new-type function-name environment [Generic Function]

This generic function is used to set the proclaimed type of the function associ-
ated with function-name in environment to new-type.

If function-name is associated with a macro or a special operator in environ-

16.2. GLOBAL ENVIRONMENT PROTOCOL 59

ment, then an error is signaled.

⇒ function-inline function-name environment [Generic Function]

This generic function returns the proclaimed inline information of the function
associated with function-name in environment.

If function-name is not associated with an ordinary function or a generic func-
tion in environment, then an error is signaled.

If function-name is associated with an ordinary function or a generic function
in environment, then the return value of this function is either nil, inline, or
notinline. If no inline proclamation has been made, then this generic function
returns nil.

⇒ (setf function-inline)

new-inline function-name environment [Generic Function]

This generic function is used to set the proclaimed inline information of the
function associated with function-name in environment to new-inline.

new-inline must have one of the values nil, inline, or notinline.

If function-name is not associated with an ordinary function or a generic func-
tion in environment, then an error is signaled.

⇒ function-cell function-name environment [Generic Function]

A call to this function always succeeds. It returns a cons cell, in which the car
always holds the current de�nition of the function named function-name. When
function-name has no de�nition as a function, the car of this cell will contain a
function that, when called, signals an error of type undefined-function. The
return value of this function is always the same (in the sense of eq) when it is
passed the same (in the sense of equal) function name and the same (in the
sense of eq) environment.

⇒ function-unbound function-name environment [Generic Function]

A call to this function always succeeds. It returns a function that, when called,
signals an error of type undefined-function. When function-name has no
de�nition as a function, the return value of this function is the contents of
the cons cell returned by function-cell. The return value of this function is
always the same (in the sense of eq) when it is passed the same (in the sense of

60 CHAPTER 16. ENVIRONMENTS

equal) function name and the same (in the sense of eq) environment. Client
code can use the return value of this function to determine whether function-
name is unbound and if so signal an error when an attempt is made to evaluate
the form (function function-name).

⇒ function-lambda-list function-name environment [Generic Function]

This function returns two values. The �rst value is an ordinary lambda list, or
nil if no lambda list has been de�ned for function-name. The second value is
true if and only if a lambda list has been de�ned for function-name.

⇒ (setf function-lambda-list)

new-lambda-list function-name environment [Generic Function]

This generic function is used to associate a new lambda list with a function
name.

new-lambda-list is a new lambda list for the function named function-name

⇒ function-ast function-name environment [Generic Function]

This function returns the abstract syntax tree corresponding to the function-

name, or nil if no abstract syntax tree has been associated with the function.

⇒ boundp symbol environment [Generic Function]

It returns true if symbol has a de�nition in environment as a constant variable,
as a special variable, or as a symbol macro. Otherwise, it returns nil.

⇒ constant-variable symbol environment [Generic Function]

This function returns the value of the constant variable symbol.

If symbol does not have a de�nition as a constant variable, then an error is
signaled.

⇒ (setf constant-variable) value symbol environment [Generic Function]

This function is used in order to de�ne symbol as a constant variable in envi-

ronment, with value as its value.

If symbol already has a de�nition as a special variable or as a symbol macro in
environment, then an error is signaled.

If symbol already has a de�nition as a constant variable, and its current value

16.2. GLOBAL ENVIRONMENT PROTOCOL 61

is not eql to value, then an error is signaled.

⇒ special-variable symbol environment [Generic Function]

This function returns two values. The �rst value is the value of symbol as a
special variable in environment, or nil if symbol does not have a value as a
special variable in environment. The second value is true if symbol does have
a value as a special variable in environment and nil otherwise.

Notice that the symbol can have a value even though this function returns nil
and nil. The �rst such case is when the symbol has a value as a constant
variable in environment. The second case is when the symbol was assigned a
value using (setf symbol-value) without declaring the variable as special.

⇒ (setf special-variable) value symbol environment init-p [Generic Function]

This function is used in order to de�ne symbol as a special variable in environ-

ment.

If symbol already has a de�nition as a constant variable or as a symbol macro
in environment, then an error is signaled. Otherwise, symbol is de�ned as a
special variable in environment.

If symbol already has a de�nition as a special variable, and init-p is nil, then
this function has no e�ect. The current value is not altered, or if symbol is
currently unbound, then it remains unbound.

If init-p is true, then value becomes the new value of the special variable symbol.

⇒ symbol-macro symbol environment [Generic Function]

This function returns two values. The �rst value is a macro expansion function
associated with the symbol macro named by symbol, or nil if symbol does not
have a de�nition as a symbol macro. The second value is the form that symbol

expands to as a macro, or nil if symbol does not have a de�nition as a symbol
macro.

It is guaranteed that the same (in the sense of eq) function is returned by two
consecutive calls to this function with the same (in the sense of eq) symbol as
the �rst argument, as long as the de�nition of symbol does not change.

62 CHAPTER 16. ENVIRONMENTS

⇒ (setf symbol-macro) expansion symbol environment [Generic Function]

This function is used in order to de�ne symbol as a symbol macro with the
given expansion in environment.

If symbol already has a de�nition as a constant variable, or as a special variable,
then an error of type program-error is signaled.

⇒ symbol-plist symbol environment [Generic Function]

This function is a generic version of the Common Lisp function cl:symbol-plist.

It returns the property list of symbol in environment.

⇒ (setf symbol-plist) new-plist symbol environment [Generic Function]

This function is a generic version of the standard Common Lisp function named
(setf cl:symbol-plist).

Set the property list of symbol in environment to new-plist. The consequences
are unde�ned if new-plist is not a property list.

⇒ variable-type symbol environment [Generic Function]

This generic function returns the proclaimed type of the variable associated
with symbol in environment.

If symbol has a de�nition as a constant variable in environment, then the result
of calling type-of on its value is returned.

If symbol does not have a de�nition as a constant variable in environment, and
no previous type proclamation has been made for symbol in environment, then
this function returns t.

⇒ (setf variable-type) new-type symbol environment [Generic Function]

This generic function is used to set the proclaimed type of the variable associ-
ated with symbol in environment.

If symbol has a de�nition as a constant variable in environment, then an error
is signaled.

It is meaningful to set the proclaimed type even if symbol has not previously
been de�ned as a special variable or as a symbol macro, because it is meaningful

16.2. GLOBAL ENVIRONMENT PROTOCOL 63

to use (setf symbol-value) on such a symbol.

Recall that the HyperSpec de�nes the meaning of proclaiming the type of a
symbol macro. Therefore, it is meaningful to call this function when symbol

has a de�nition as a symbol macro in environment.

⇒ variable-cell symbol environment [Generic Function]

A call to this function always succeeds. It returns a cons cell, in which the
car always holds the current de�nition of the variable named symbol. When
symbol has no de�nition as a variable, the car of this cell will contain an object
that indicates that the variable is unbound. This object is the return value of
the function variable-unbound. The return value of this function is always
the same (in the sense of eq) when it is passed the same symbol and the same
environment.

⇒ variable-unbound symbol environment [Generic Function]

A call to this function always succeeds. It returns an object that indicates that
the variable is unbound. The cons cell returned by the function variable-cell

contains this object whenever the variable named symbol is unbound. The
return value of this function is always the same (in the sense of eq) when it is
passed the same symbol and the same environment (in the sense of eq). Client
code can use the return value of this function to determine whether symbol is
unbound.

⇒ find-class symbol environment [Generic Function]

This generic function is a generic version of the Common Lisp function cl:find-class.

If symbol has a de�nition as a class in environment, then that class metaobject
is returned. Otherwise nil is returned.

⇒ (setf find-class) new-class symbol environment [Generic Function]

This generic function is a generic version of the Common Lisp function (setf

cl:find-class).

This function is used in order to associate a class with a class name in envi-

ronment.

If new-class is a class metaobject, then that class metaobject is associated
with the name symbol in environment. If symbol already names a class in

64 CHAPTER 16. ENVIRONMENTS

environment than that association is lost.

If new-class is nil, then symbol is no longer associated with a class in environ-

ment.

If new-class is neither a class metaobject nor nil, then an error of type
type-error is signaled.

⇒ setf-expander symbol environment [Generic Function]

This generic function returns the setf expander associated with symbol in en-

vironment. If symbol is not associated with any setf expander in environment,
then nil is returned.

⇒ (setf setf-expander) new-expander symbol environment [Generic Function]

This generic function is used to set the setf expander associated with symbol

in environment.

If symbol is not associated with an ordinary function, a generic function, or a
macro in environment, then an error is signaled.

If there is already a setf expander associated with symbol in environment,
then the old setf expander is lost.

If a value of nil is given for new-expander, then any current setf expander
associated with symbol is removed. In this case, no error is signaled, even if
symbol is not associated with any ordinary function, generic function, or macro
in environment.

⇒ default-setf-expander environment [Generic Function]

This generic function returns the default setf expander, to be used when the
function setf-expander returns nil. This function always returns a valid setf

expander.

⇒ (setf default-setf-expander) new-expander environment [Generic Function]

This generic function is used to set the default setf expander in environment.

⇒ type-expander symbol environment [Generic Function]

16.2. GLOBAL ENVIRONMENT PROTOCOL 65

This generic function returns the type expander associated with symbol in en-

vironment. If symbol is not associated with any type expander in environment,
then nil is returned.

⇒ (setf type-expander) new-expander symbol environment [Generic Function]

This generic function is used to set the type expander associated with symbol

in environment.

If there is already a type expander associated with symbol in environment, then
the old type expander is lost.

⇒ find-package name environment [Generic Function]

Return the package with the name or the nickname name in the environment
environment. If there is no package with that name in environment, then return
nil. Contrary to the standard Common Lisp function cl:find-package, for
this function, name must be a string.

⇒ package-name package environment [Generic Function]

Return the string that names package in environment. If package is not asso-
ciated with any name in environment, then nil is returned. Contrary to the
standard Common Lisp function cl:package-name, for this function, package
must be a package object.

⇒ (setf package-name) new-name package environment [Generic Function]

Make the string new-name the new name of package in environment. If new-
name is nil, then package no longer has a name in environment.

⇒ package-nicknames package environment [Generic Function]

Return a list of the strings that are nicknames of package in environment.
Contrary to the standard Common Lisp function cl:package-nicknames, for
this function, package must be a package object.

⇒ (setf package-nicknames) new-names package environment [Generic Function]

Associate the strings in the list new-names as nicknames of package in envi-

ronment.

66 CHAPTER 16. ENVIRONMENTS

16.3 The static runtime environment

The static runtime environment contains runtime objects that the compiler can
not prove to have dynamic extent, so it must assume that they have inde�nite
extent.

This situation occurs when some function captures the environment by using
a lambda expression which contains references to local variables outside the
expression itself, though such a capture in itself does not necessarily imply
that the variables thus referenced have inde�nite extent. It all depends on
what happens to the function that is the result of the lambda expression.

If that function is just called, then there is no capture. This situation might
occur as a result of a let being transformed into an application of a lambda

expression.

If that function is passed as an argument to another function which is known
not to hold on to its argument for longer than the duration of the function
invocation, then there is no capture. The typical situation would be when a
lambda expression is passed to a standard Common Lisp function such as one
of the sequence functions that is known to have this property.

In other cases, it might be too risky for the compiler to assume dynamic extent.
Even if a function is called which declares its corresponding parameter to have
dynamic extent, it might be too risky to trust this, because the function might
be rede�ned later.1

Even if all the conditions are present for the compiler to prove that some object
has dynamic extent, it would also have to prevent the debugger to access a
variable containing that object. Otherwise, the debugger or the inspector could
very well hold on to that object inde�nitely.

When the compiler must assume that some variable has inde�nite extent, then
code must be generated to store that variable in a heap-allocated environment.

It is entirely possible that allocating objects on the stack may not have any
signi�cant performance advantage. If the nursery collector allows allocation by

1An exception would be if the called function is in the same compilation unit in which
case it can not be rede�ned without the caller being rede�ned at the same time.

16.3. THE STATIC RUNTIME ENVIRONMENT 67

incrementing a pointer, then allocation in the nursery is just as fast as allocation
on the stack. Furthermore, if the nursery collector is a copying collector, then
it will not touch dead objects. Therefore, there is also no cost in deleting
objects that are no longer referenced. There are three possible additional costs
associated with allocating objects in the nursery compared to allocating objects
on the stack:

1. If the objects survive for a long time, then they will be traced by the
garbage collector, and possibly promoted to an older generation. This
situation is unlikely, however. It would mean that the program is allo-
cating objects with dynamic extent, but that are nevertheless kept alive
for a long time. Presumably, that means that these objects are being used
a lot during the execution of the function that allocated them. If so, the
time for the allocation should be negligible compared to the execution of
the function.

2. The nursery collector will run more often since more objects are allocated
from the nursery than would be the case if these objects with dynamic
extent were allocated on the stack. For this aspect to be signi�cant, such
allocations must be frequent.

3. Cache performance might be better for the stack than for the nursery,
but this would also be unlikely, given that the nursery is relatively small
and relatively frequently accessed, so it is very likely to also be in the
cache. However, it is entirely possible that objects with dynamic extent
become inaccessible before the function that created them exits. Then,
allocating the objects on the stack would prevent the garbage collector
from reclaiming them, and they would remain allocated beyond their
lifetime. If that is the case, then allocating the objects on the stack may
in fact harm cache performance simply because a bigger stack may be
required.

To make sure that this additional cost is signi�cant and thus worth removing
by having the compiler take into account possible stack allocations, a fairly
complicated test would have to be devised:

• Two versions of the system would have to be implemented. One that
allocates objects with dynamic extent on the stack and another one that

68 CHAPTER 16. ENVIRONMENTS

allocates those objects on the heap. For the purpose of benchmark-
ing, the �rst version could be implemented by having the compiler trust
dynamic-extent declarations, and by making sure that such declarations
are only inserted where they are correct.

• The two versions of the system would need to be executed on a signi�cant
and representative application program.

• The work of the garbage collector would have to be pro�led for the two
cases. In particular, the number of nursery collections and the number
of objects being promoted would have to be monitored.

• The maximum size of the stack needs to be monitored to determine
whether allocating objects on the stack causes a signi�cant di�erence
in required stack space.

• Di�erence in cache performance should be determined as well, if possible.

16.4 Runtime information

The compiler will generate runtime information available both to the debugger
and to the garbage collector. For each value of the program counter2, all local
locations in use (in registers, stack frame, or static environment) have associ-
ated type information. Maintaining this type information does not require any
runtime overhead. All that is required is a mapping from a program counter
value to a block of runtime information.

A location can have one of di�erent types of values:

• Tagged Lisp value. This is the most general type. It covers every possible
Lisp value. The garbage collector must trace the object contained in this
location according to its type, which the garbage collector itself has to
test for.

• Raw machine value. No location will be tagged with this type, but instead
with any of the subtypes given below.

2The values of the program counter are relative to the beginning of the code object.

16.4. RUNTIME INFORMATION 69

� Raw immediate machine value

∗ Raw integer.

∗ Raw Unicode character.

∗ Raw �oating-point value.

� Raw machine pointer

∗ Raw machine pointer to a cons cell.

∗ Raw machine pointer to the header object of a general instance.

∗ Raw machine pointer that may point inside the rack of some
other object. In this case, the location has to be indicated as tied
to another location that contains either a Lisp pointer or a raw
machine pointer to one of the previous types. This possibility
will be used when (say) a pointer to an object is stored in some
location, and a temporary pointer to one of the elements of the
object is needed. The garbage collector will modify this pointer
value by the same amount as that used to modify the rack.

70 CHAPTER 16. ENVIRONMENTS

Chapter 17

Object system

SICL will implement the full metaobject protocol (MOP) as described by the
Art of the Metaobject Protocol (AMOP) [KR91], in as far it does not con�ict
with the HyperSpec.

17.1 Classes of class metaobjects

The AMOP stipulates the existence of four class metaclasses, namely:

• standard-class. This is the default metaclass for classes created by
defclass. It is also the metaclass for all classes in the metaobject proto-
col except t, function, generic-function, and standard-generic-function.

• funcallable-standard-class. This is the metaclass for generic-function,
and standard-generic-function, and of course for user-de�ned sub-
classes of those classes.

• built-in-class. This is the metaclass for all built-in classes. More
about built-in classes in Section 17.1.2.

• forward-referenced-class. This is the metaclass for classes that have
been referred to as superclasses, but that have not yet been created by
defclass.

71

http://www.metamodular.com/CLOS-MOP/class-standard-class.html
http://www.metamodular.com/CLOS-MOP/class-funcallable-standard-class.html
http://www.metamodular.com/CLOS-MOP/class-generic-function.html
http://www.metamodular.com/CLOS-MOP/class-standard-generic-function.html
http://www.metamodular.com/CLOS-MOP/class-built-in-class.html
http://www.metamodular.com/CLOS-MOP/class-forward-referenced-class.html

72 CHAPTER 17. OBJECT SYSTEM

In addition, the HyperSpec requires the existence of a class metaclass named
structure-class. Whether conditions have their own metaclass is not speci-
�ed.

In SICL, every class (i.e., every instance of a metaclass) contains a unique

number which is an integer assigned sequentially from 0 as a class is created or
modi�ed. When a class is modi�ed, its old unique number is never reused, leav-
ing holes in the sequence corresponding to numbers that no longer correspond
to any classes.1

Every standard-object2 contains a stamp, which is the unique number of its class
as it was when the instance was created. This number is always the �rst element
of the rack of the standard-object. Even though some system classes can not
be rede�ned, standard-objects that are instance of system classes contain a
stamp.

17.1.1 Standard classes

Instances of standard-class (i.e. �standard classes�) are typically created by
defclass. When no superclasses are given to defclass, the class standard-object
is automatically made a superclass of the new class.

Perhaps the most interesting feature of standard classes is that they can be
rede�ned even though there are existing instances of them. Without this fea-
ture, using Common Lisp interactively would not be as obvious as it is, so in
some ways, this feature is totally essential for any interactive language.3

When there are existing instances of a standard class that is modi�ed, the
HyperSpec gives us very speci�c rules concerning how those instances are to
be updated. The HyperSpec is also very clear that existing instances do not
need to be updated immediately. But they must be updated no later than
immediately before an access to any of the slots of the instance is attempted.
The reason for that rule is so that implementations would not have to maintain

1It might be possible for the garbage collector to change the unique numbers of the classes,
compacting the sequence, but that probably will not be necessary.

2Recall that a standard-object is an instance allocated on the heap, excluding cons cells.
(See Chapter 15.)

3By �interactive language�, we mean a language in which a program is built up by a
sequence of interactions that augment and modify the state of some global environment.

17.1. CLASSES OF CLASS METAOBJECTS 73

a reference from a class to each of its instance. Such references would be costly
in terms of space, and would have to be weak4 so as to avoid memory leaks.

Instead of keeping weak references from classes to instances, implementations
solve the problem of updating obsolete instance by keeping some kind of ver-
sion information in each instance. When some operation on the instance is
attempted, the version information is checked against the current version of
the class. If the instance is obsolete, it is �rst updated according to the new
de�nition of the class. Furthermore, the version information must contain
enough information of the class as it was when the instance was created to
determine whether slots have been added or removed.

In SICL the �rst location of the rack of each standard-object contains a stamp,
which is the unique number of the class as it was when the instance was created.
In addition, if the instance is �exible, it also contains a reference to the list of

e�ective slots of the class as it was when the instance was created. This method
makes the rack of the instance completely self contained. It allows the garbage
collector to trace the obsolete instance, or update it before tracing. It allows
for an inspector to inspect the obsolete instance if this should be required. The
main purpose of the list of e�ective slots, however, is making it possible to
update an obsolete instance.

Another very handy feature of standard classes, but a much simpler one, is
that it allows for instances to change class. In other words, without changing
the identity of the instance, the class that it is an instance of can be changed
to a di�erent class. Again, the HyperSpec gives very speci�c rules about how
the instance must be transformed in order to be a legitimate instance of the
new class. No special mechanism is required for this feature to work, other
than the ability to modify all aspects of an instance except its identity. The
identity is preserved by the fact that the header object remains the same.

17.1.2 Built-in classes

The HyperSpec contains a signi�cant number of classes that every conforming
implementation must contain. Most (all?) of these classes are referred to as

4A weak reference is a reference that is not su�cient for the garbage collector to keep
the object alive. The object is kept alive only if there is at least one strong (i.e. normal)
reference to it as well.

74 CHAPTER 17. OBJECT SYSTEM

system classes. Some example of system classes are symbol, package, list,
stream, etc. The HyperSpec tells us that by system class is meant �a class
that may be of type built-in-class in a conforming implementation and hence
cannot be inherited by classes de�ned by conforming programs.�

Language implementers are thus given a choice as to whether a system class
is really a standard class (See Section 17.1.1.), a structure class (See Sec-
tion 17.1.4.), or a built-in class.

Some of the decisions are determined by the AMOP. For instance, the classes
standard-class and built-in-class, labeled by the HyperSpec as system
classes are required by the AMOP to be standard classes. Any implementation
that wants to have an implementation of the metaobject protocol as close as
possible to what the AMOP requires should take this fact into account.

However, most system classes are not mentioned at all by the AMOP, so there
we have a choice. In SICL all these classes will be implemented as either built-in
classes or standard classes. None of them will be structure classes.

Even though SICL will implement some of the system classes as built-in classes,
this does not mean that we have to use special-purpose ways of implementing
them. The SICL object system takes advantage of features of the metaobject
protocol such as inheritance to de�ne built-in classes as well as standard classes.

Even for system classes where instances do not all have the same size, notably
the array class and its subclasses, we plan to take advantage of the metaobject
protocol by allowing make-instance to take a size argument in addition to
ordinary initialization arguments. We also plan to allow defclass to de�ne
built-in classes by passing it built-in-class as a metaclass. In that case, the
default superclass is t instead of standard-object. This technique allows us
to concentrate all important features of a built-in class and its instances in one
place, which will simplify maintenance.

17.1.3 Condition classes

The HyperSpec de�nes an entire hierarchy of classes with the class condition
as the root class. This hierarchy is not mentioned by the AMOP.

We plan to implement this hierarchy by de�ning a class named condition-class

17.1. CLASSES OF CLASS METAOBJECTS 75

analogous to standard-class for standard objects. The class condition plays
a role analogous to the class standard-object for instances of standard-class.

As with built-in classes (See Section 17.1.2.), we plan to take advantage of the
very complete set of tools provided by the metaobject protocol to implement
condition classes. In particular, we want to allow for condition classes to be
rede�ned even though existing instances may be present, just the way instances
of standard-object may exist even though the class is being modi�ed. How-
ever, we do not plan to make it possible for an instance of a condition class to
have its class changed (i.e. by using change-class).

With respect to bootstrapping, the hierarchy of condition classes can be created
fairly late in the process. The reason for this is that we plan to de�ne a dumbed-
down version of error during the bootstrapping process, and that version will
not create any condition instances. Furthermore, all SICL code calls error and
the other condition-signaling functions with the name of a condition (which is
a symbol) rather than with a condition instance, again to allow us to create
this hierarchy later in the bootstrapping process.

17.1.4 Structure classes

Just like condition classes (See Section 17.1.3.), structure classes are not men-
tioned at all in the AMOP. In addition, their description in the HyperSpec is
limited to the dictionary entry for defstruct.

No part of SICL uses structure classes. The main reason is that they are
di�cult to work with due to the fact that conforming implementations are
allowed to make it impossible to rede�ne existing structure classes.5

However, since we plan for SICL to be a conforming implementation, we nat-
urally plan to include structure classes as well.

The main reason for using structure classes rather than standard classes is

5I seem to remember reading somewhere that implementers are encouraged to make it
possible to modify existing structure classes in the same way that it is possible to modify
standard classes even though there are existing instances, but I don't remember where I
read this, and I can't seem to �nd the place. It might have been in CLtL2 rather than
the HyperSpec, but I can't �nd it there either. Oh well, when I �nd it, I will remove this
footnote.

76 CHAPTER 17. OBJECT SYSTEM

performance. Structure classes are supposed to be implemented in the �most
e�cient way possible�.6 Presumably, the restrictions on structure classes exist
to allow for an implementation to represent instances as a pointer directly
to the vector of slots and avoid any indirection, which saves some memory
accesses7 However, in SICL all heap-allocated objects (other than cons cells)
are represented as a two-word header object and a rack for reasons of simplicity
and in order to allow our memory-management strategy to work.

Since SICL represents instances of structure classes this way, there is no reason
to keep the restriction that structure classes can not be modi�ed. For that
reason, we plan to avoid that restriction.

Structure classes have another interesting restriction, namely that they allow
only single inheritance. This restriction allows slot accessors to be non-generic,
because it becomes possible for a slot to have the same physical position in all
subclasses. We may or may not take advantage of this possibility. The higher
priority for SICL is to make accessors for standard objects fast, rather than to
work on an e�cient implementation of structures.

With respect to bootstrapping, since SICL does not use structure classes at all
for its implementation, implementing defstruct can be done fairly late. In
fact, we may omit it in the initial version of the system.

17.2 Generic function dispatch

We use the generic dispatch algorithm described in our paper at ICL 2014
[Str14a]

17.2.1 Call history

Each generic function contains a call history. The call history is a simple list
of call history entries. A call history entry associates a list of classes (those
of the classes of the required arguments to the generic function) with a list of

applicable methods and an e�ective method.

6Again, I forget where I read this, and I can't �nd it.
7No checks for outdatedness, etc.

17.2. GENERIC FUNCTION DISPATCH 77

As permitted by the AMOP, when the generic function is invoked, its discrimi-
nating function �rst consults the call history (though, for performance reasons,
not directly) in order to see whether an existing e�ective method can be reused,
and if so, it invokes it on the arguments received.

If the call history does not contain an entry corresponding to the classes of
the required arguments, as required by the AMOP, the discriminating function
then �rst calls compute-applicable-methods-using-classes, passing it the
classes of the required arguments. If the second value returned by that call
is true, then the e�ective method is computed by calling the generic function
named compute-effective-method. The resulting e�ective method is com-
bined with the classes of the arguments, and the list of applicable methods into
a call history entry which is added to the call history, and the e�ective method
is invoked on the arguments received. If the second value returned by the call
is false, then the discriminating function calls compute-applicable-methods
with the list of the arguments received, and then the e�ective method is com-
puted by calling compute-effective-method and �nally invoked.

When a method is added to the generic function, the call history is traversed to
see whether there exists a call history entry such that the new method would
be applicable to arguments with the classes of the entry. If so, the entry is
removed. If any entry was removed, a new discriminating function is computed
and installed.

When a method is removed from the generic function, the call history is tra-
versed to see whether there exists a call history entry such that the method to
be removed is in the list of applicable methods associated with the entry. If so,
the entry is removed. If any entry was removed, a new discriminating function
is computed and installed.

When a class metaobject is reinitialized, that class metaobject and all of its sub-
classes are traversed. For each class metaobject traversed, specializer-direct-methods
is called to determine which methods contain that class as a specializer. By
de�nition, any such method will be associated with a generic function. The
call history of that generic function is traversed to determine whether there is
an entry containing that method, and if so, the entry is removed from the call
history. The AMOP allows the implementation to keep the entry if the prece-

dence list of the class does not change as a result of being reinitialized, but for
reasons explained below, we remove the entry independently of whether this is

78 CHAPTER 17. OBJECT SYSTEM

the case. If an entry was removed, a new discriminating function is computed
and installed.

17.2.2 The discriminating function

The discriminating function of a generic function is computed from the call
history.

If the call history has relatively few entries, then the discriminating function
computes the identi�cation8 of each of the required arguments. It then uses
numeric comparisons in a tree-shaped computation to determine which (if any)
e�ective method to invoke. In e�ect, the discriminating function becomes a
very simple automaton where each transition is determined by a comparison
between two small integers. The class numbers become constants inside the
compiled code of the discriminating function, making comparison fast. Each
argument identi�cation is tested from left to right, without taking the argument

precedence order of the generic function into account. For each argument, the
set of possible e�ective methods is �ltered by a binary search. The search is
based on intervals of class numbers as opposed to individual class numbers.
This optimization can speed up the dispatch considerably when an interval
of class numbers yield the same e�ective method. Since it is common that
the unique class numbers of the classes in an inheritance subtree cluster into
contiguous intervals, this optimization is often pertinent, and in this case, only
two tests (for the upper and the lower bound of the interval of class numbers)
are required to determine whether that method is applicable.

The automaton of the discriminating function can not contain class numbers
that were discarded as a result of classes being reinitialized, simply because
whenever a class is reinitialized, the call history of every generic function spe-
cializing on that class or any of its subclasses is updated and the discriminating
function is recomputed.

When a generic function is invoked on some arguments, the �rst step is to
compute the identi�cation of each required argument. The identi�cation is
computed as follows:

8Recall that the identi�cation of an object is either the stamp of the object if it is a
standard-object, or the unique number of the class of the object if it is a special instance.

17.2. GENERIC FUNCTION DISPATCH 79

• If the object is a standard-object, then it is the stamp of the instance,
i.e. the unique number of the class of the instance as it was when the
instance was created. The stamp is stored in the �rst element of the rack
of the instance.

• Otherwise (i.e., if the object is a special instance), it is the unique number

of the class of the object.

The identi�cations are then used by the automaton to �nd an e�ective method
to invoke. If the automaton fails to �nd an e�ective method, the following
steps are taken:

1. The identi�cation is checked against the unique number of the class of
the object. If they are not the same, then the object is a standard-object,
and it is obsolete. The machinery for updating the instance is invoked,
and then a second attempt with the automaton is made.

2. If the object identi�cation and the unique number of the class of the ob-
ject are the same, then compute-applicable-methods-using-classes

is called. If the �rst return value is not the empty list and the second re-
turn value is true, then an e�ective method is computed and a new entry
is added to the call history and the automaton is recomputed. Finally
the e�ective method is invoked.

3. If the �rst value is the empty list and the second value is still true, then
no-applicable-method is called.

4. If the second return value is false, then compute-applicable-methods

is called. If the result is the empty list, then no-applicable-method is
called. Otherwise an e�ective method is computed and invoked.

Notice that in most cases, no explicit test is required to determine whether an
instance is obsolete. Also notice that for up-to-date standard-objects, there is
no need to access the class of the instance in order to determine an e�ective
method to call. For objects other than standard-objects, there is a small �xed
number of possible classes, so determining the identi�cation of an object can
be open coded.

80 CHAPTER 17. OBJECT SYSTEM

Notice also that many interesting optimizations are possible here when the
automaton is computed from the call history.

• If there is a single entry in the call history, the automaton can be turned
into a sequence of equality tests (one for each required argument). In
particular, for an accessor method, the automaton degenerates into a
single test and a call to either a method that directly accesses the slot or
to no-applicable-method.

• In the case of a single entry in the call history, and a single applicable
accessor method for that entry, the slot access can be open coded in the
automaton.

• In the case above and when in addition the specializer of the accessor
method is a class for a special instance (such as fixnum, character, or
cons), determining the unique number of the class object is not required.
Instead, the discriminating function can be a simple test for tag bits.

If the call history has a large number of entries, a di�erent technique may be
used. The generic function print-object may be such a function. A simple
hashing scheme might be better in that case.

17.2.3 Accessor methods

Accessor methods are treated specially when an e�ective method is computed
from a list of applicable methods. Rather than applying the default scheme of
generating a call to the method function, when any of the methods returned by
compute-applicable-methods-using-classes is an accessor method, compute-discriminating-function,
replaces such a method by one that makes a direct access to the slot of the
instance. It does this by determining the slot location of the slot in instances of
the class of the argument. The substitution is not done by compute-applicable-methods-using-classes
itself, because the list of (sorted) methods returned by that function is used
for the purpose of caching in order to avoid recomputing an e�ective method.

Since the location of a slot may change when the class is reinitialized, an
e�ective method computed this way may become invalid as a result. For that
reason, whenever a class is reinitialized, any call history entries with methods

17.3. DEALING WITH METASTABILITY ISSUES 81

specializing on that class or any of its subclasses are removed. This way, a call
to compute-applicable-methods-using-classes will be forced, and a new
location will be determined.

17.3 Dealing with metastability issues

The AMOP gives a few examples of metastability issues that need to be
dealt with. It also suggests solutions to these problems, based on recogniz-
ing special cases such as when class-slots is called with the class named
standard-class.

In SICL we use a di�erent method, called satiation. Satiation, in e�ect, turns
metastability problems into bootstrapping problems which are much easier to
deal with. This technique is documented in our paper at ILC 2014 [Str14b].

De�nition 17.1. A generic function F is said to be satiated with respect to

a set of classes C if and only if for every combination of classes of required

arguments of F for which an e�ective method can be computed, if a call is

made to F with such a combination, then an e�ective method exists in the

cache of F so that no additional generic function needs to be invoked in order

for the corresponding e�ective method to be called.

As part of bootstrapping the object system, every speci�ed9 generic function
is satiated with respect to the set of speci�ed classes. Furthermore, since
speci�ed classes can not be rede�ned, we can make sure that every speci�ed
generic function always remains satiated with respect to the set of speci�ed
classes.

Theorem 17.1. If every speci�ed generic function is satiated with respect to

the set of speci�ed classes, then every call to class-slots will terminate.

Proof: Base case: If class-slots is called with an instance of standard-class,
then by de�nition of satiation, the call will terminate. If class-slots is called
with some other class, then calls are made to compute-applicable-methods-using-classes,
compute-effective-method, and compute-discriminating-function in or-
der to compute a new discriminating function for class-slots. But these

9By the AMOP.

82 CHAPTER 17. OBJECT SYSTEM

functions are satiated with respect to standard-generic-function and as
class-slots is a standard-generic-function, those calls will terminate.

17.4 Implementing slot-value and (setf slot-value)

For reasons of brevity, the following discussion is about the function slot-value,
but the case of (setf slot-value) is entirely analogous.

In the Art of the Metaobject Protocol (AMOP) [KR91], these functions are
mentioned as prime examples of issues of metastability. The scenario that
is cited is that slot-value of an instance calls class-slots on the class of
the instance, and class-slots is an accessor which calls slot-value. In the
AMOP, the metastability problem is resolved by recognizing that the recursion
must eventually reach standard-class, so that treating standard-class as a
special case resolves the problem.

However, the scenario cited above represents a simpli�cation of the real one.
The speci�cation requires slot-value to call slot-value-using-class with
the instance, the class of the instance, and an e�ective slot de�nition metaob-

ject. In order for slot-value to �nd the right e�ective slot de�nition metaob-
ject, it has to traverse the list of e�ective slot de�nition metaobjects until
one is found that has the name of the slot given as an argument. To �nd
the name of an e�ective slot de�nition metaobject, slot-value has to call
slot-definition-name which is an accessor which calls slot-value which is
again a metastability issue.

However, in SICL, as Section 17.2.3 explains, accessors in SICL do not call
slot-value, so the scenario from the AMOP does not apply. Furthermore,
since the accessors class-slots and slot-definition-name are satiated (See
Section 17.3.) these functions do not have to call slot-location for the base
case.

The standard methods on slot-value-using-class call the reader function
slot-definition-location on the e�ective slot de�nition and use that loca-
tion to call standard-instance-access on the instance.

Chapter 18

Setf expanders

The HyperSpec requires1 the following function call forms to have a corre-
sponding setf form:

• Accessors for parts of a list: car, cdr, caar, cadr, cdar, cddr, caaar,
caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr, caaaar, caaadr,
caadar, caaddr, cadaar, cadadr, caddar, cadddr, cdaaar, cdaadr, cdadar,
cdaddr, cddaar, cddadr, cdddar, cddddr, first, second, third, fourth,
fifth, sixth, seventh, eighth, ninth, tenth rest, nth.

• Array element accessors: aref, row-major-aref, char, schar, bit, sbit,
svref.

• Other array accessors: fill-pointer

• Sequence element accessors: elt.

• Other sequence accessors: subseq.

• Symbol properties: symbol-plist.

• Environment accessors: symbol-function, symbol-value, fdefinition,
macro-function, compiler-macro-function.

1See �gure 5.7 in section 5.1.2.2 in the HyperSpec.

83

84 CHAPTER 18. SETF EXPANDERS

• Hash table accessors: gethash.

• CLOS-related accessors: class-name, slot-value, find-class.

• Miscellaneous: documentation, logical-pathname-translations, get,
readtable-case.

The HyperSpec also gives the implementer a choice concerning the implemen-
tation of setf forms either as functions or as setf expanders. For SICL we
always choose a function whenever possible. Consequently, every setf form in
the list above is implemented as a function.

Chapter 19

Compiler

19.1 General description

The SICL compiler is a Cleavir-based compiler. As such it uses the intermediate
representations de�ned by Cleavir, and in particular the abstract syntax trees
and the instructions of the various levels of intermediate representations that
it de�nes.

However, Cleavir allows for substantial customization. For that reason, in this
chapter we describe exactly how SICL uses the features that Cleavir provies in
order to create a complete compiler.

19.2 Di�erent uses of the compiler

The compiler is used in several di�erent situations. There are essentially three
use cases, so it is appropriate to talk about three di�erent compilers:

• The �le compiler. This compiler is invoked by compile-file. It takes a
Common Lisp source �le and generates a �le containing object code (a
so-called fasl �le).

• The lambda expression compiler. This compiler is invoked when compile

85

86 CHAPTER 19. COMPILER

is called with arguments nil and a lambda expression, and by coerce

to convert a lambda expression to a function. It compiles the lambda
expression in the null lexical environment. It produces a function object.

• The top-level expression compiler. This compiler is invoked by eval. It
produces a function with no parameters which is then immediately called

by eval.

In addition to these use cases, we also distinguish between di�erent compilers
along an orthogonal dimension:

• A native compiler is a compiler that produces code for its host Common
Lisp system.

• An extrinsic compiler is a compiler that produces code for a Common
Lisp system other than its host system. An extrinsic compiler is also
known as a cross compiler.

We now have potentially 6 di�erent compilers. Speci�c issues related to cross
compilation are discussed in Chapter 21.

19.3 Compilation phases

19.3.1 Reading the source code

SICL uses the Eclector1 implementation-independent version of the standard
function read and related functions.

While Eclector is also the default reader of SICL, for use with the compiler,
Eclector is used to produce a concrete syntax tree2 or CST for short. A CST is a
direct mirror of the representation of the source code as ordinary S-expressions,
except that each sub-expression is wrapped in a standard object that may con-
tain other information about the expression. In particular, the SICL compiler

1https://github.com/s-expressionists/Eclector
2https://github.com/s-expressionists/Concrete-Syntax-Tree

19.3. COMPILATION PHASES 87

includes information about source location in the CST, so that this information
can be propagated throughout the compilation procedure.

In order to accomplish source tracking, SICL starts by reading the entire source
�le into memory. The internal representation of the source code is a vector of
lines, where each line is a string. We use this representation, rather than a
single string for the entire �le, in order to avoid the issue of how newlines are
represented.

The macro with-source-tracking-stream-from-file in the package named
sicl-source-tracking takes a �le speci�cation and turns it into a Gray stream
by reading the entire �le contents and then wrapping that contents in an in-
stance of the standard class source-tracking-stream. An instance of that
class contains the vector of lines of the initial �le, the index of the current line,
and the index of the current character within the current line.

The library trivial-gray-streams is used to de�ne methods on the generic
functions stream-read-char and stream-unread-char. These methods mod-
ify the index of the current line and the current character as appropriate.

The system sicl-source-tracking also de�nes methods on two generic func-
tions provided by the Eclector subsystem eclector.parse-result. The method
on source-position returns an instance of the class sicl-source-position.
Instances of this class contain the entire �le contents as the vector of lines,
together with the line and character index taken from the current values of the
stream. The method on make-source-range simply constructs a cons of the
start and the end position, provided they are both non-null.

As a result of this source tracking, every CST that corresponds to a precise
location in the source �le has a start and an end position associated with it.
Not every CST has a location in the source �le, however. For example, if
the source �le contains a list in the form of an opening parenthesis followed
by several elements separated by spaces, then only the CSTs corresponding to
the entire list, and those associated with each element, have source positions
associated with them. CSTs corresponding to the cons cells of the list, other
than the �rst, do not have source positions associated with them.

The source is read in a loop that reads top-level expressions until end of �le.
The expressions are then wrapped in a CST representing the special operator
progn so as to produce a single CST for the entire source code in the �le.

88 CHAPTER 19. COMPILER

19.3.2 Conversion from CST to AST

Once the CST has been produced by Eclector, it is converted to an abstract

syntax tree, or AST for short. This conversion involves the use of a global

environment as de�ned in Section 16.1 and of lexical environments that evolve
during the compilation procedure.

For the lexical environments during compilation, SICL uses a library called
Trucler3 which provides a modern version of the environment-related functions
de�ned in the second edition of �Common Lisp, the Language� [Ste90].

In the AST, all macro calls have been expanded, and all other aspects of the
compilation environment have been taken into account. For that reason, the
AST is independent of the compilation environment.

The AST has a textual representation, so the AST can be saved to a �le
and a similar AST can be created by an application of the read function
(using a particular read table) to the contents of the �le. In fact, this textual
representation is the fasl format that SICL uses. It ful�lls the requirements
for minimal compilation de�ned by the Common Lisp standard. For more
information, see Chapter 20.

The AST that is generated by Cleavir is a single instance of the class progn-ast
that contains the AST representations of each of the top-level forms in the
original code, with the order preserved.

19.3.3 Conversion from AST to HIR

The acronym HIR stands for High-level Intermediate Representation. This
representation is de�ned by Cleavir and documented in chapter 6 of the Cleavir
documentation. The main characteristic of HIR is that the objects manipulated
are all Common Lisp objects, though some of them might be unboxed.

3https://github.com/s-expressionists/Trucler

19.3. COMPILATION PHASES 89

19.3.4 HIR transformations

Introducing explicit argument processing

When HIR code is created by Cleavir the outputs of an enter-instruction

consist of lexical variables that should be initialized according to the lambda
list stored in that instruction. This process is deliberately hidden in the initial
HIR version, because it is highly dependent on the implementation.

In SICL, we handle the situation by introducing two new instructions, namely:
compute-argument-count-instruction and argument-instruction. The HIR
code that parses the arguments according to the lambda list is su�ciently com-
plex that we documented it separately, in Chapter 25.

Converting symbol-value-instructions

A symbol-value-instruction is converted to an fdefinition-instruction

followed by a funcall-instruction. The input to the fdefinition-instruction
is the constant input with a value of symbol-value. The output of the fdefinition-
instruction becomes the �rst input to the funcall-instruction. The second
input to the funcall-instruction is the constant input (i.e. the symbol of
which the value is wanted) of the original instruction.

Since the output of the funcall-instruction is the distinguished multiple-
value location, the original instruction is converted to a multiple-to-fixed-

instruction with its original output.

Converting set-symbol-value-instructions

A set-symbol-value-instruction is converted to an fdefinition-instruction
followed by a funcall-instruction. The input to the fdefinition-instruction
is the constant input with a value of (setf symbol-value). The output of the
fdefinition-instruction becomes the �rst input to the funcall-instruction.
The second input to the funcall-instruction is the constant input (i.e. the
symbol of which the value is wanted) of the original instruction. The third
input to the is the value to assign to the variable.

90 CHAPTER 19. COMPILER

Since no outputs are involved, the original instruction is converted directly to
the funcall-instruction.

Hoisting fdefinition-instructions

All fdefinition-instructions are hoisted, meaning that they are transformed
and executed at the top level. The lexical location that holds the function in
question then becomes a shared variable that must later be processed during
closure conversion.

We assume that the input of the fdefinition-instruction is a constant rep-
resenting the name of the desired function. For that reason, this transformation
must be accomplished before constants are hoisted.

We keep an equal hash table of functions that have already been hoisted. The
key of the hash table is the name of the function, and the value is the lexical
location that holds the function cell of the function in the global environment.

The fdefinition-instruction is turned into a car-instruction with the
input being the lexical location holding the function cell. At the top level, we
insert a funcall-instruction that calls the function that, given a function
name, returns a function cell. This function is the �rst-and only argument to
the top-level function, so we �nd it by inserting an argument-instruction

with a constant input with a value of 0. The return value of the call is ob-
tained by a multiple-to-fixed-instruction immediately following the in-
serted funcall-instruction.4

Eliminating fixed-to-multiple-instructions

Recall that the fixed-to-multiple-instruction takes a number of inputs
and stores the corresponding values as multiple values in the distinguished
location for this purpose.

Eliminating a fixed-to-multiple-instruction involves the introduction of

4FIXME: Check whether we really need to insert a multiple-to-fixed instruction. It
might be possible to insert a return-value-instruction since we know that there is a single
return value.

19.3. COMPILATION PHASES 91

two new instruction classes.

The �rst one is named initialize-return-values-instruction. It takes a
single constant input value which is a �xnum that indicates the number of
multiple values that the distinguished location should hold.

The second one is named set-return-value-instruction. It takes two in-
puts. The �rst input is a constant input containing a �xnum that indicates
the index (starting at 0) of the value to store. The second input is the value
to store at that index.

We generate a single initialize-return-values-instruction which is given
the length of the input list to the original instruction. Then we generate as
many set-return-value-instructions as there are inputs, each one given
the next input in the list of inputs of the original instruction.

Notice that if the fixed-to-multiple-instruction has no inputs, we still
generate an initialize-return-values-instruction with the value 0, and
a single set-return-value-instruction with the value nil in its constant
input.

Eliminating multiple-to-fixed-instructions

Recall that the multiple-to-fixed-instruction fetches multiple values from
the distinguished location for this purpose, and stores each one in a �xed lexical
location.

Eliminating the multiple-to-fixed-instruction involves the introduction of
two new instruction classes.

The �rst one is name compute-return-value-count-instruction. It has
no inputs and a single output that will contain the number of values in the
distinguished location.

The second one is named return-value-instruction. It has a single input
which is the index of the value in the distinguished location that is wanted. It
has a single output which is a lexical location that will contain the value at the
given index in the distinguished location.

92 CHAPTER 19. COMPILER

This transformation is more complicated than the one used for eliminating
the fixed-to-multiple-instruction, because of the default values that are
given to outputs with an index greater than or equal to the number of available
values. The generated code contains two main branches, each one with as
many stages as there are outputs of the original instruction. In one branch,
the index of the desired value is less than the number of available values, so the
corresponding value is assigned to the output. In the other branch, the index
of the desired value is greater than or equal to the number of available values,
so nil is assigned to the output instead. At each stage in the �rst branch, a
test is emitted to see whether there are any more values. If that is not the
case, control is transferred to the second branch.

As a special optimization, when there is a single output of the original in-
struction, we do not emit any compute-return-value-count-instruction.
Instead a single return-value-instruction is generated with an index of 0.
We are allowed to do that because even when no values are returned from a
function, the �rst location must contain nil.

Hoisting non-trivial constants

Non-trivial constants must be hoisted to the top-level function. Whether
a costant is trivial or not is determined by a call to the generic function
trivial-constant-p.

The class top-level-enter-instruction is a subclass of the class enter-instruction
and it adds a slot holding a list of all non-trivial constants in the entire code
graph. When the top-level enter instruction is turned into a closure, these con-
stants become part of the static environment of the top-level function. Initially,
the list of constants is empty. During hosting, we keep a parallel list of lexical
locations corresponding to each constant.

For each non-trivial constant, a check is �rst made to see whether it is already
in the list of constants in the top-level enter instruction. If not, it is added
to the end of the list, and a new lexical location is added to the end of the
parallel list. Either way, we determine the position of the constant in the
list of constants. The corresponding lexical location has the same position in
the parallel list. When a new constant and a new lexical location must be
added, a fetch-instruction is added at the top level. The inputs of the

19.3. COMPILATION PHASES 93

fetch-instruction are the static-environment location of the top-level enter
instruction, and a constant input corresponding to the position of the constant
in the list. The output of the fetch-instruction is the corresponding lexical
location.

The constant input is replaced by the corresponding lexical location.

Notice that this transformation will create shared variables, so it is important
that it is performed before closure conversion.

Eliminating create-cell-instructions

A create-cell-instruction is turned into a funcall-instruction with cons
as the function to call and nil as both the arguments.

The cons function is loaded from the static environment. To do that, we emit
an aref-instruction with the static environment location and the o�set of
the cons function in the static environment.

Similarly, the constant nil is loaded from the static environment. Again,
we emit an aref-instruction, this time with an index corresponding to the
position of nil in the static environment.5

Eliminating fetch-instructions

A fetch-instruction is turned into an aref-instruction with a modi�ed
index input, in that we add 4 to the constant input of the fetch-instruction
in order to get the constant input to the aref-instruction. The reason for
this di�erence is that the fetch-instruction does not take into account the
four initial elements of the static environment.

5FIXME: Investigate whether we could annotate the create-cell-instructions with
inputs representing the cons function as output from an fdefinition-instruction and the
constant nil. It may not be possible since a create-cell instruction is created as a result of
closure conversion, and adding an fdefinition-instruction means that it must be hoisted,
and followed by closure conversion. Perhaps it is possible if we do the closure conversion
inside-out, since there are no create-cell-instructions in the innermost function.

94 CHAPTER 19. COMPILER

Eliminating read-cell-instructions

A read-cell-instruction is simply replaced by a car-instruction. The
car-instruction assumes that its argument is a cons cell, but we know that
is the case, because we created the cell by a call to the cons function.

Eliminating write-cell-instructions

A write-cell-instruction is simply replaced by a rplaca-instruction.
The rplaca-instruction assumes that its argument is a cons cell, but we
know that is the case, because we created the cell by a call to the cons func-
tion.

19.3.5 Conversion from HIR to MIR

MIR di�ers from HIR in that address calculations are explicit.

The conversion from HIR to MIR starts by expanding funcall-instructions
as described below. This transformation is done �rst, because it introduces
read-nook-instructions that must be expanded by transformations that are
made later.

Following the expansion of funcall-instructions, conversion to MIR is done
one function (i.e. starting with an enter-instruction at a time. For each
function, conversion starts by eliminating enclose-instructions in that func-
tion. Following that, the function process-instruction is called for each
instruction in the function.

Expanding funcall-instructions

In HIR, the funcall-instruction takes a function object as its �rst input.
During the conversion to MIR, we replace that input with three inputs:

1. A lexical location containing a �xnum that represents the absolute ad-
dress of the code of the callee.

19.3. COMPILATION PHASES 95

2. A lexical location containing the static environment to be passed to the
callee.

3. A lexical location containing the dynamic environment to be passed to
the callee.

The �rst two items are fetched from the rack of the function object. We use
a nook-read instruction for each one. For this reason, funcall-instructions
must be expanded before nook-read-instructions and nook-write-instructions.

The dynamic environment is a lexical location that is kept in a slot of the
funcall-instruction.

Eliminating enclose-instructions

The enclose-instruction is turned into a funcall-instruction. The func-
tion being called is an element of the static environment (currently at index
1).

The arguments to the enclose function are:

1. A constant representing the absolute address of the entry point of the
function resulting from the enclose operation.

2. An arbitrary number of inputs that become the elements of the static
environment of the function resulting from the enclose operation.

The absolute address of the entry point is not known when this transformation
is applied. We therefore generate a constant of 0 instead. But we must keep
track of this constant so that it can be patched, once the address of the entry
point is known. For that reason, we do not generate an ordinary constant input,
but an instance of a subclass of constant-input named entry-point-input

that, in addition to the constant value, also contains a reference to the enter
instruction being enclosed.

The remaining arguments to the funcall-instruction are just the inputs of
the enclose-instruction being replaced.

96 CHAPTER 19. COMPILER

Therefore, the complete sequence of instructions that replaces the enclose-instruction
is:

1. An aref-instruction taking as inputs the lexical location holding the
static environment and a constant input holding the value 1. The output
is a lexical location holding the enclose function to be called.

2. A funcall-instruction with a �rst input being the lexical location of
the output of the aref-instruction and the remaining inputs being the
inputs of the enclose-intruction.

3. A return-value-instruction with a constant input having the value
0, meaning we obtain the �rst and only value returned by the preceding
funcall instruction.

Eliminating car-instructions

To eliminate a car-instruction we �rst insert an unsigned-sub-instruction.
There are two inputs to that instruction. The �rst input is the input of the
original instruction. The second input is an immediate-input with a value
of 1. The output is a raw-integer. This instruction has a single successor,
meaning that we do not care about any carry, since there can not be any.

Next, we change the class of the car-instruction so that it becomes a memref1-
instruction. The input of the memref1-instruction is the raw-integer

computed by the unsigned-sub-instruction. The output is the output of
the original car-instruction.

Eliminating cdr-instructions

To eliminate a cdr-instruction we �rst insert an unsigned-add-instruction.
There are two inputs to that instruction. The �rst input is the input of the
original instruction. The second input is an immediate-input with a value
of 7. The output is a raw-integer. This instruction has a single successor,
meaning that we do not care about any carry, since there can not be any.

19.3. COMPILATION PHASES 97

Next, we change the class of the cdr-instruction so that it becomes a memref1-
instruction. The input of the memref1-instruction is the raw-integer

computed by the unsigned-sub-instruction. The output is the output of
the original cdr-instruction.

Eliminating rplaca-instructions

To eliminate an rplaca-instruction we �rst insert an unsigned-sub-instruction.
There are two inputs to that instruction. The �rst input is the �rst input of
the original instruction. The second input is an immediate-input with a value
of 1. The output is a raw-integer. This instruction has a single successor,
meaning that we do not care about any carry, since there can not be any.

Next, we change the class of the rplaca-instruction so that it becomes a
memset1-instruction. The :address input of the memset1-instruction is
the raw-integer computed by the unsigned-sub-instruction. The :value

input of the memset1-instruction is the second input of the original instruc-
tion.

Eliminating rplacd-instructions

To eliminate an rplacd-instruction we �rst insert an unsigned-add-instruction.
There are two inputs to that instruction. The �rst input is the �rst input of
the original instruction. The second input is an immediate-input with a value
of 7. The output is a raw-integer. This instruction has a single successor,
meaning that we do not care about any carry, since there can not be any.

Next, we change the class of the rplacd-instruction so that it becomes a
memset1-instruction. The :address input of the memset1-instruction is
the raw-integer computed by the unsigned-sub-instruction. The :value

input of the memset1-instruction is the second input of the original instruc-
tion.

98 CHAPTER 19. COMPILER

Eliminating aref-instructions

To eliminate an aref-instruction, we �rst insert an unsigned-add-instruction.
There are two inputs to that instruction. The �rst input is the �rst input of
the original instruction. The second input is an immediate-input with a value
of 3. The output is a raw-integer. This instruction has a single successor,
meaning that we do not care about any carry, since there can not be any.

Next, we insert a memref1-instruction. The input to this instruction is the
raw-integer computed in the �rst step. The output is a fresh lexical location
that will hold the rack of the array.

The next step depends on whether the array is a bit-array or not, because if it
is a bit-array we can't just use a memory reference to read the element; it has
to be masked and shifted from a bigger datum.

19.3.6 Conversion from MIR to LIR

Register allocation using graph coloring

For register allocation, we use the traditional graph coloring method. Since this
problem is intractable, we use the method described in [Muc97]. This method
uses two rules:

1. The �rst rule consists of removing a node N in the graph that has a
degree that is less than the number of available colors (registers), and
solving the reduced problem. The node color chosen for N is any color
not chosen by a node adjacent to N.

2. The second rule consists of removing a node N in the graph with the
smallest degree that is greater than or equal to the number of available
colors, and solving the reduced problem. With some luck, two or more
nodes adjacent to N are assigned the same color so that the total number
of colors used by the adjacent nodes is less than the number of available
colors, leaving at least one color for N.

We modi�ed the standard algorithm to allow for variables to have a required

19.3. COMPILATION PHASES 99

register, so that either the required register gets assigned to the variable, or the
variable is spilled. This technique is used for variables that are used to hold
callee-saved registers to avoid that one such register gets assigned to another.
We also allow for a variable to have a preferred register which is chosen by the
register allocator if it is available at the time a choice has to be made. We use
this technique to try as much as possible to compute a value into a register
that it is required to end up in eventually, such as a register for a particular
argument.6

Alternative strategy for register allocation

The material is this section is derived from random thoughts on an alternative
strategy for register allocation. It may be removed, or it may be improved in
the future.

Assume that for each program point we maintain a set of entries. Each entry
corresponds to a lexical variable that is live at that program point. An entry
contains the following information:

• The live variable itself.

• A dedicated stack location to save it in, should that be necessary.

• An estimated distance until it is going to be needed (in a register) next.

• A location where it is needed next. There are three possible values for
this location:

� A speci�c register. This possibility is used when the variable is next
needed as a register argument in a function call.

� The symbol :callee-saves. This possibility is used when the vari-
able is next needed past a funcall-instruction.

� The symbol :any. This possibility is used when the the variable is
next needed to be in a register, but there are no restrictions on what
kind of register it is.

6FIXME: Document how we indicate that an instruction might trash a register. Also,
attempt to use the same method to indicate that a global function or variable value might
change across a function call.

100 CHAPTER 19. COMPILER

• A set of locations where it is currently available. This set is represented
as a list. An element of the set can be a speci�c register, or the symbol
:stack meaning that it is available in its dedicated stack location. This
set has at least one element in it.

There are two aspects to this technique. The �rst aspect is the computation
of the estimated distance. The second aspect is how decisions are made to
assign a lexical variable to a register and which variable to no longer assign to
a register when there are not enough registers to go around.

We �rst consider the second problem, and discuss the �rst problem later.

Now let us assume that we have some register assignment A before executing
some instruction I. We want to process this instruction and determine a register
assignment B after the execution if I. Processing the instruction may involve
altering it, but also perhaps inserting new instructions before it and after it.

case register-type

assignment-instruction v2 <- v1

if v1 is already in a register R:

then

if v1 is dead after I:

then

. Change I to a nop-instruction.

. Make R a member of the entry

for v2 after I

else

if a register S of the type

needed for v2 is available:

then

. Make S a member of the entry

for v2 after I.

else

. Find all variables v such that

a register S of the right type

is in the set of v.

. Between v2 and all the v,

determine which one is

needed furthest in the future.

if that variable is v:

19.3. COMPILATION PHASES 101

then

. Change I to a MOV instruction

moving R to the privileged

stack location for v2.

else

. Let v0 be the variable that

is needed furthest in the

future and let S0 be its

associated register.

if the privileged stack location

when v0 is not in its set:

. Emit a MOV instruction before I,

using S0 as a source and the

privileged stack location as its

destination.

. Add the privileged stack location

to the set for v0.

. Change I to a MOV instruction with

R being the source and S0 being

the destination.

. Remove S0 from the set associated

with v0.

else v1 is not in a register

19.3.7 Code generation

19.3.8 Access to special variables and global functions

To access a special variable, the code must �rst search the dynamic environment in
case a per-thread binding exists. If such a binding exists, a tagged pointer of type
cons is returned, but the pointer refers to an entry on the stack; a dynamic value cell.
If no such binding exists, the global value cell is returned.

In general, for every access to a special variable, the value cell must be searched for
�rst. There are many cases, however, where the compiler can detect that multiple
accesses to some special variable must refer to the same value cell. In that case, the
(pointer to the) value cell is a candidate for register allocation, and computing it is
loop invariant.

When it comes to the contents of the value cell, however, the situation is more compli-
cated because of the possibility that multiple threads might access the (global) value

102 CHAPTER 19. COMPILER

cell concurrently. In fact, this is a common situation when a global variable is used
for synchronization purposes.

When some function accesses a special variable multiple times, it might seem required
to read the contents of the value cell for each such access, even though the compiler
can prove that the same cell is involved in each access. However, this turns out not
to be the case. If none of the accesses are part of a loop and there is no externally
detectable activity between accesses (no assignment to a global variable, no function
call), then there is always a possible scenario according to which the same value will
be obtained in all the accesses. In such cases, not only the value cell, but also the
value itself is a candidate for register allocation. Even if accesses are part of a loop,
in some cases the value can be cached in a register. The necessary condition for such
register allocation is that the loop provably terminates and that there is no externally
detectable activity between consecutive accesses.

The situation for global functions is similar to that of special variables, except simpler
since no special binding can exist for such accesses. While it is not very probable that
anyone attempts to use global functions for synchronization purposes, this can not be
excluded either. An exception to the rule is when the global function is a standard
Common Lisp function, in which case it can not be replaced, so it is safe to cache the
function in a register.

19.3.9 Access to array elements

When an array has not been declared to be simple it might seem like every access to
an array element would require locking to prevent a di�erent thread from adjusting the
array between the time the length is determined and the time the element is accessed.

However, in SICL the rack of an array is always internally consistent in that the length
information accurately re�ects the number of elements. When an array is adjusted,
a di�erent rack is allocated, and the new rack is put in place in a single memory
store operation. Therefore, when the elements of an array are processed in some
way, the compiler might access the rack only once and cache it in a register. This
optimization is possible even in a loop, as long as the compiler can prove that the
loop eventually terminates, and as long as there is no externally detectable activity
between the accesses.

19.4. RANDOM THOUGHTS 103

19.3.10 Access to slots of standard objects

19.4 Random thoughts

The compiler should be as portable as possible. It should use portable Common Lisp
for as many of the passes as possible.

The compiler should keep information about which registers are live, and how values
are represented in live registers, for all values of the program counter. This information
is used by the garbage collector to determine what registers should be scanned, and
how. It is also used by the debugger.

104 CHAPTER 19. COMPILER

Chapter 20

Compiled �les

In order to simplify SICL as much as possible, we will use the external format of
the Cleavir abstract syntax tree as our so called fasl format. The Cleavir compiler
already contains code that makes it possible to read and write abstract syntax trees,
so with this decision, there is no need to design an additional �le format.

The external format for abstract syntax trees can be read using the Common Lisp
standard read function with a single additional reader macro, also provided by Cleavir.
Since the Common Lisp reader will be present in the initial executable SICL system,
there is no special code needed in order to read a fasl �le.

Furthermore, the compiler will also be present in the initial initial executable SICL
system, so the code for converting an abstract syntax tree into native code is also
present.

The Common Lisp standard requires compiled �les to be at least minimally compiled,
and the abstract syntax tree format ful�lls the requirement for minimal compilation.

The main downside of using this format for fasl �les is decreased performance com-
pared to a format containing native code. However, loading fasl �les is typically only
done during the development phase of some software, and almost never at run-time.
The additional delay required when loading an abstract syntax tree as a result of con-
verting it to intermediate code and then to native code is likely to be barely noticeable
during development.

105

106 CHAPTER 20. COMPILED FILES

Chapter 21

Cross compilation

In this chapter, we discuss issues speci�c to cross compilation, i.e. when a compiler
produces code for a system other than the host Common Lisp system it runs in. For
general compilation topics, see Chapter 19.

21.1 General issues with cross compilation

While it may seem obvious and straightforward (though perhaps not easy) to write
a cross compiler for Common Lisp, there are some minor issues that have to be
considered.

Perhaps the most important extrinsic compiler is the extrinsic �le compiler.

We exclude the use of the read function of the host environment because it can cause
some problem.1 Instead, we use a the Eclector2 reader, which can be customized in
many ways. In particular, it allows source tracking, i.e. it can associate �le position
with every expression in the �le.

Clearly, since we are talking about the �le compiler we face the same restrictions
concerning literal objects as a native �le compiler does.3 In addition, though, there

1The main di�erence that is important to bootstrapping is that some implementations use
implementation-speci�c functions in the result of the backquote reader macro. This practice
is explicitly allowed by the HyperSpec (Section 2.4.6), and also encouraged (Section 2.4.6.1).

2See https://github.com/robert-strandh/Eclector
3See Section 3.2.4 in the HyperSpec.

107

108 CHAPTER 21. CROSS COMPILATION

are some restrictions due to di�erences between systems that the HyperSpec explicitly
allows.

The most important such restriction has to do with �oating-point numbers. If (say)
the host allows for fewer types of �oating-point numbers, then read will not accurately
represent the source code as the native �le compiler for the target would. Code to be
compiled by the cross compiler must therefore either avoid �oating-point literals alto-
gether, or instead use some expression to create it and make sure that the expression
is not evaluated until load time.

The other restriction has to do with potential numbers which di�erent systems may
de�ne di�erently. The easy solution is to avoid potential numbers in source code. This
should not be hard to do.

21.2 Environments

The HyperSpec4 gives a list of the environments that are related to compilation. We
brie�y summarize them here:

• The startup environment is the environment of the image from which the com-
piler was invoked.

• The compilation environment is used to hold information that is required by
the compiler in order to accomplish its task correctly. Such information consists
of de�nitions and declarations that the compiler needs, for instance de�nitions
of macros and constant variables, and declarations such as inline or special.

• The evaluation environment which the HyperSpec says is a run-time environ-
ment in which evaluations by the compiler takes place, typically executions of
macro expanders, but also any other code that is indicated by eval-when to be
evaluated at compile time.

• The run-time environment in which the program resulting from the compilation
is eventually executed.

The run-time environment is clearly not relevant to cross compilation.

For the purpose of cross compilation, it is practical to think of the startup environment
as containing two distinct parts, that we call the host startup environment and the
target startup environment.

4See section 3.2.1 of the HyperSpec.

21.2. ENVIRONMENTS 109

The host startup environment is the environment of the image from which the cross
compiler was invoked.

The target startup environment is the initial compilation environment, in that it con-
tains de�nitions and declarations that must already exist when the cross compiler is
invoked. In SICL the target startup environment is represented explicitly as a standard
object (i.e., an instance of standard-object). Furthermore, the compilation environ-
ment of the cross compiler is the same as the target startup environment so that any
side e�ects on the compilation environment as a result of the cross compilation persist
after the compilation terminates.

The relevant functions of the target startup environment are all Common Lisp func-
tions that access or modify the environment, such as fdefinition, proclaim, (setf
macro-function), etc., but also implementation-speci�c functions such as functions
for accessing and storing type expanders and setf expanders.

As with other bundles of related functionality, environment manipulation uses its
own package, named sicl-environment. In the native environment, this package
usees the common-lisp package so that the symbols fdefinition, proclaim, etc.
are the imported symbols from the common-lisp package. During cross compilation,
however, these symbols are shadowed by the sicl-environment package, so that they
are distinct from the analogous symbols of the host common-lisp package. Symbols
naming macros such as declaim and defun, however, are not shadowed, but the
resulting expansion code contains symbols that are quali�ed by the sicl-environment
package.

Let us take an example. Code fragment 21.1 shows a simpli�ed implementation of the
defparameter macro. It is simpli�ed in that it does not handle the documentation.

(defmacro defparameter (name initial-value &optional doc)

(declare (ignore doc))

`(progn

(eval-when (:compile-toplevel)

(ensure-defined-variable ,name))

(eval-when (:load-toplevel :execute)

(setf (symbol-value ,name) ,initial-value))))

Code fragment 21.1: Simpli�ed de�nition of the defparameter macro.

The de�nition of Code fragment 21.1 is established with the package sicl-environment
as the current package. For that reason, the symbols ensure-defined-variable and
symbol-value are internal to the sicl-environment package. When code that in-

110 CHAPTER 21. CROSS COMPILATION

vokes the defparameter macro is compiled by the cross compiler, the host compiler
will evaluate the form (ensure-defined-variable ,name). The result of that eval-
uation is that the variable is created in the target startup environment. Subsequent
compilations by the cross compiler will �see� this de�nition and consider the vari-
able as special. When the resulting code is loaded into the run-time environment,
the symbol symbol-value in the package sicl-environment is imported from the
package common-lisp.

21.3 Compile-time processing of standard macros

In Appendix A, we show a complete list of all the standard Common Lisp macros.

Most of those macros have no side e�ects at compile time. They simply expand to
some other code to be processed instead. Some of them do, however, expand to
eval-when forms that include the situation :compile-toplevel. We need to make
sure that one of the following cases applies for those macros:

• The macro is not used in any top-level form in any �le compiled by the cross
compiler.

• The cross compiler is able to evaluate the relevant code with the analogous side
e�ects as the native �le compiler.

• The cross compiler provides alternative de�nitions for functions that are invoked
as a result of compile-time evaluation, and those alternative de�nitions provide
enough of the side e�ects to compile all �les that are subsequently subject to
compilation by the cross compiler.

The standard Common Lisp macros with compile-time side e�ects are: declaim,
defclass, defconstant, defgeneric, define-compiler-macro, define-condition,
define-method-combination, define-modify-macro, define-setf-expander, define-symbol-macro,
defmacro, defmethod, defpackage, defparameter, defsetf, defstruct, deftype,
defun, defvar, and in-package.

Of those, the following will never appear as top-level forms in any �le compiled by the
cross compiler:

• define-condition, because the condition system is not needed by the cross
compiler.

• define-method-combination.

21.3. COMPILE-TIME PROCESSING OF STANDARD MACROS 111

• defstruct.

The following macros are handled in an analogous way during cross compilation:
declaim, defconstant, define-compiler-macro, define-modify-macro, define-setf-expander,
define-symbol-macro, defmacro, defparameter, defsetf, deftype, defun, defvar,
and in-package.

We are left with the following macros: defclass, defgeneric, and defmethod.

For defclass the HyperSpec says that the class name must be made available for use
as a specializer in defmethod and as the :metaclass option in subsequent invocations
of defclass. It is thus suggested that defmethod checks at compile-time that the
specializers exist, though the HyperSpec does not mention any such checks.

The HyperSpec also says that if find-class is called with the relevant environment
argument, then the class object should be returned. We can think of no need to invoke
find-class at compile time.

Now, according to the speci�cation of the metaobject protocol, defclass expands to
a call to ensure-class (not a standard Common Lisp function). Our solution is thus
to provide a compile-time version of sicl-clos:ensure-class that only makes the
class name available.

For defgeneric, the HyperSpec says that the implementation is not required to per-
form any compile-time side e�ects, but that it can choose to store information about
arguments and such if it so wants. As a consequence, we handle it the same way we
handle defun.

For defmethod, the HyperSpec says that the implementation is not required to perform
any compile-time side e�ects. The compile-time side e�ects will be in the case where
no prior defgeneric form has been seen, in which case we store information about
the derived parameters of the implicitly created generic function. As suggested by the
HyperSpec in the description of defclass, we also verify that the specializer class
names have been previously seen.

112 CHAPTER 21. CROSS COMPILATION

Chapter 22

Bootstrapping

22.1 General technique

SICL is bootstrapped from an existing Common Lisp implementation that, in addition
to the functionality required by the standard, also contains the library closer-mop.
This Common Lisp system is called the host. The result of the bootstrapping process
is an image in the form of an executable �le containing a SICL system. This system is
called the target. The target image does not contain a complete Common Lisp system.
It only contains enough functionality to load the remaining system from compiled �les.
(See Section 22.3.).

In general, the target image can be thought of as containing graph of Common Lisp
objects that have been placed in memory according to the spaces managed by the
memory manager. To create this graph, we �rst generate an isomorphic graph of host
objects in the memory of an executing host system. To generate the target image,
the isomorphic host graph is traversed, creating a target version of each object in the
host graph, and placing that object on an appropriate address in the target image.

The isomorphic host graph contains objects that are analogous to their target coun-
terparts as follows:

• A target fixnum is represented as a host integer. Whether the integer is a host
�xnum or not depends on the �xnum range of the host.

• A target character is represented as a host character.

• A target cons cell is represented as a host cons cell.

113

114 CHAPTER 22. BOOTSTRAPPING

• A target standard object is represented as a host standard-object for the
header and a host simple-vector for the rack.

• Target objects such as bignums or �oats are not needed at this stage of boot-
strapping, so they do not have any representation as host objects.

22.2 Global environments for bootstrapping

During di�erent stages of bootstrapping, a particular name (of a function, class,
etc) must be associated with di�erent objects. As a trivial example, the function
allocate-object in the host system is used to allocate all standard objects. But
allocate-object is also a target function for allocating objects according to the
way such objects are represented by the target system. These two functions must be
available simultaneously.

Most systems solve this problem by using temporary names for target packages during
the bootstrapping process. For example, even though in the �nal target system, the
name allocate-object must be a symbol in the common-lisp package, during the
bootstrapping process, the name might be a symbol in a package with a di�erent
name.

In SICL we solve the problem by using multiple �rst-class global environments.

For the purpose of bootstrapping, it is convenient to think of eval as consisting of
two distinct operations:

• Compile. A compilation environment is used to expand macros and for other
compilation purposes. The result of compilation is code that is untied to any
particular environment.

• Tie. The untied code produced by the �rst step is tied to a particular run-time
environment. Tying is accomplished by calling the top-level function created
by the compilation. This function takes a single argument, namely a �function-
cell �nder� function. Calling that argument function with a function name,
returns a function cell in a particular environment, thereby tying the code to
that particular environment.

The reason we need to separate these two operations is that for bootstrapping pur-
poses, the two are going to use distinct global environments.

22.3. VIABLE IMAGE 115

22.3 Viable image

An image I is said to be viable if and only if it is possible to obtain a complete Common
Lisp system by starting with I and loading a sequence of ordinary compiled �les.

22.4 Bootstrapping stages

22.4.1 Stage 1, bootstrapping CLOS

De�nitions

De�nition 22.1. A simple instance is an instance of some class, but that is also
neither a class nor a generic function.

De�nition 22.2. A host class is a class in the host system. If it is an instance of the
host class standard-class, then it is typically created by the host macro defclass.

De�nition 22.3. A host instance is an instance of a host class. If it is an instance
of the host class standard-object, then it is typically created by a call to the host
function make-instance using a host class or the name of a host class.

De�nition 22.4. A host generic function is a generic function created by the host
macro defgeneric, so it is a host instance of the host class generic-function.
Arguments to the discriminating function of such a generic function are host instances.
The host function class-of is called on some required arguments in order to determine
what methods to call.

De�nition 22.5. A host method is a method created by the host macro defmethod,
so it is a host instance of the host class method. The class specializers of such a
method are host classes.

De�nition 22.6. A simple host instance is a host instance that is neither a host class
nor a host generic function.

De�nition 22.7. An ersatz instance is a target instance represented as a host data
structure, using a host standard object to represent the header and a host simple
vector to represent the rack. In fact, the header is an instance of the host class
funcallable-standard-object so that some ersatz instances can be used as func-
tions in the host system.

De�nition 22.8. An ersatz instance is said to be pure if the class slot of the header
is also an ersatz instance. An ersatz instance is said to be impure if it is not pure.
See below for more information on impure ersatz instances.

116 CHAPTER 22. BOOTSTRAPPING

De�nition 22.9. An ersatz class is an ersatz instance that can be instantiated to
obtain another ersatz instance.

De�nition 22.10. An ersatz generic function is an ersatz instance that is also a
generic function. It is possible for an ersatz generic function be executed in the host
system because the header object is an instance of the host class funcallable-standard-object.
The methods on an ersatz generic function are ersatz methods.

De�nition 22.11. An ersatz method is an ersatz instance that is also a method.

De�nition 22.12. A bridge class is a representation of a target class as a simple host
instance. An impure ersatz instance has a bridge class in the class slot of its header.
A bridge class can be instantiated to obtain an impure ersatz instance.

De�nition 22.13. A bridge generic function is a target generic function represented
as a simple host instance, though it is an instance of the host function funcallable-standard-object

so it can be executed by the host.

Arguments to a bridge generic function are ersatz instances. The bridge generic func-
tion uses the stamp (See Section 17.2.2.) of the required arguments to dispatch on.

The methods on a bridge generic function are bridge methods.

De�nition 22.14. A bridge method is a target method represented by a simple host
instance. The class specializers of such a method are bridge classes. The method
function of a bridge method is an ordinary host function.

Preparation

In addition to the host environment, eight di�erent SICL �rst-class environments are
involved in the bootstrapping procedure. We shall refer to them as E0, E1, E2, E3,
E4, E5, E6, and E7.

Phase 0

In phase 0, we load enough functionality into environment E0 to be able to compile
source �les into fasl �les. This functionality involves mainly standard macros that are
required during compilation.

We then compile all the �les that are ultimately used in the �nal system. Since fasl
�les are independent of any particular environment, the same fasl �le can be loaded
into di�erent environments during the following phases of stage 1.

22.4. BOOTSTRAPPING STAGES 117

Any code can be compiled, provided that the macros that are called by the code are
de�ned in environment E0. In particular, code that de�nes macros can be compiled
into fasls.

Phase 1

We de�ne a class named sicl-boot-phase-1:funcallable-standard-class in the
host environment. It is de�ned as a direct subclass of the host class closer-mop:funcallable-standard-class.
When we evaluate defclass forms in phase 2, the classes created are instances of this
class. We could have chosen this class only for instances that need to be executable
in the host, and a subclass of the host class standard-class for the others, but the
host class funcallable-standard-class can do everything that the host class named
standard-class can, so we simplify the code by using one single class.

We de�ne an :around method on initialize-instance in the host environment,
specialized to sicl-boot-phase-1:funcallable-standard-class. The purpose of
this :around method is to remove the :reader and :accessor slot options supplied
in the defclass forms that we evaluate in phase 1. Without this :around method,
the host function initialize-instance would receive keyword arguments :readers
and :writers and it would then add methods to host generic functions corresponding
to the names given. Instead, this :around method adds the readers and writers to
the generic function with the corresponding name in envirnoment E3. It assumes that
this generic function exists, so we must create it explicitly before a class that de�nes
the accessor method can be de�ned.

In environment E1, we de�ne the following classes:

• t. This class is the same as the host class t. It will be used as a specializer on
method arguments that are not otherwise specialized.

• common-lisp:standard-generic-function. This class is the same as the class
with the same name in the host environment. It will be used to create host
generic functions in environment E2.

• common-lisp:standard-method. This class is the same as the class with the
same name in the host environment. This class will be used to create methods
on the generic functions that we create in environment E3.

• common-lisp:standard-class. This class is the same as the class named
sicl-boot-phase-1:funcallable-standard-class in the host environment.
It will be used to create most classes in E2.

118 CHAPTER 22. BOOTSTRAPPING

• common-lisp:built-in-class. This class is the same as the class named
sicl-boot-phase-1:funcallable-standard-class in the host environment.
It will be used to create some classes in E2, for example t and function.

• sicl-clos:funcallable-standard-class. This class is the same as the class
named sicl-boot-phase-1:funcallable-standard-class in the host envi-
ronment. It will be used to create some classes in E2, such as generic-function
and standard-generic-function.

• sicl-clos:standard-direct-slot-definition. This class is the same as the
class named closer-mop:standard-direct-slot-definition in the host en-
vironment. This class will be used to create slot-de�nition metaobjects for the
classes that we create in environment E2.

Phase 2

The purpose of phase 2 is:

• to create host generic functions in E3 corresponding to all the accessor functions
de�ned by SICL on standard MOP classes, and

• to create a hierarchy in E2 of host standard classes that has the same structure
as the hierarchy of MOP classes.

Three di�erent environments are involved in phase 2:

• Environment E1 is used to �nd �nd host classes to instantiate. The class named
standard-class in E1 is used to instantiate most of the classes in environment
E2, for example, standard-class, built-in-class, slot-definition, etc.
The class named built-in-class in E1 is used to create classes t and function

as well as some non-MOP classes in E2. The class named funcallable-standard-class
in E1 is used to create classes generic-function and standard-generic-function,
also in environment E2. The class named standard-direct-slot-definition

in E1 is used to de�ne slot-de�nition metaobjects for the classes in environment
E2. Environment E1 is also used to �nd host classes standard-generic-function
and standard-method to instantiate in order to create generic functions in en-
vironment E3 as well as methods on those generic functions.

• The run-time environment E2 is where instances of the host classes named
standard-class, funcallable-standard-class, and built-in-class in en-
vironment E1 will be associated with the names of the MOP hierarchy of classes.
These instances are thus host classes. The entire MOP hierarchy is created as
are some built-in classes such as cons and some of the number classes.

22.4. BOOTSTRAPPING STAGES 119

• The run-time environment E3 is where instances of the host class named standard-generic-function
will be associated with the names of the di�erent accessors specialized to host
classes created in E2.

One might ask at this point why generic functions are not de�ned in the same envi-
ronment as classes. The simple answer is that there are some generic functions that
were automatically imported into E2 from the host, that we still need in E2, and that
would have been overwritten by new ones if we had de�ned new generic functions in
E2.

Several adaptations are necessary in order to accomplish phase 2:

• A special version of the function ensure-generic-function is de�ned in envi-
ronment E3. It checks whether there is already a function with the name passed
as an argument in E3, and if so, it returns that function. It makes no veri�ca-
tion that such an existing function is really a generic function; it assumes that
it is. It also assumes that the parameters of that generic function correspond
to the arguments of ensure-generic-function. If there is no generic function
with the name passed as an argument in E3, it creates an instance of the host
class standard-generic-function and associate it with the name in E3. To
create such an instance, it calls the host function make-instance.

• The function ensure-class has a special version in E2. Rather than checking
for an existing class, it always creates a new one.

Phase 2 is divided into two steps:

1. First, the defgeneric forms corresponding to the accessors of the classes of the
MOP hierarchy are evaluated using E2 as both the compilation environment and
run-time environment. The result of this step is a set of host generic functions
in E3, each having no methods.

2. Next, the defclass forms corresponding to the classes of the MOP hierarchy
are evaluated using E2 as both the compilation environment and run-time envi-
ronment. The result of this step is a set of host classes in E2 and host standard
methods on the accessor generic functions created in step 1 specialized to these
classes.

Phase 3

The purpose of phase 3 is to create a hierarchy of bridge classes that has the same
structure as the hierarchy of MOP classes.

120 CHAPTER 22. BOOTSTRAPPING

Three di�erent environments are involved in phase 3:

• The run-time environment E2 is used to look up metaclasses to instantiate in
order to create the bridge classes.

• The run-time environment E3 is the one in which bridge classes will be associ-
ated with names.

• The run-time environment E4 is the one in which bridge generic functions will
be associated with names.

We start by creating generic functions corresponding to all slot accessors that are
de�ned in the MOP hierarchy. We then create bridge classes corresponding to the
classes of the MOP hierarchy. When a bridge class is created, it will automatically
create bridge methods on the bridge generic functions corresponding to slot readers
and writers.

Creating bridge classes this way will also instantiate the host class target:direct-slot-definition.

In this phase, we also prepare for the creation of ersatz instances.

Phase 4

The purpose of this phase is to create ersatz generic functions and ersatz classes, by
instantiating bridge classes.

At the end of this phase, we have a set of ersatz instances, some of which are ersatz
classes, except that the class slot of the header object of every such instance is a
bridge class. We call such ersatz instances impure. We also have a set of ersatz generic
functions (mainly accessors) that are ersatz instances like all the others.

Phase 5

The �rst step of this phase is to �nalize all the ersatz classes that were created in
phase 4. Finalization will create ersatz instances of bridge classes corresponding to
e�ective slot de�nitions.

The second step repeats the creation of MOP generic functions and MOP classes, this
time in environments E6 and E5 respectively. As opposed to the objects created in
phase 4, the objects created in this phase are pure ersatz objects, in that the class
slot of the header object is also an ersatz object, albeit impure.

22.4. BOOTSTRAPPING STAGES 121

Phase 6

Phase 7

The purpose of this phase is to create ersatz instances for all objects that are needed
in order to obtain a viable image, including:

• ersatz built-in classes such as package, symbol, string, etc.,

• ersatz instances of those classes, such as the required packages, the symbols
contained in those packages, the names of those symbols, etc.

• ersatz standard classes for representing the global environment and its contents.

• ersatz instances of those classes.

Phase 8

The purpose of this phase is to replace all the host instances that have been used so
far as part of the entire ersatz structure, such as symbols, lists, and integers by their
ersatz counterparts.

Phase 9

The purpose of this phase is to take the simulated graph of objects used so far and
transfer it to a memory image.

Phase 10

Finally, the memory image is written to a binary �le.

122 CHAPTER 22. BOOTSTRAPPING

Chapter 23

Garbage collector

To fully appreciate the contents of this chapter, the reader should have some ba-
sic knowledge of the usual techniques for garbage collection. We recommend �The
Garbage Collection Handbook� [JHM11] to acquire such basic knowledge. We also
recommend Paul Wilson's excellent survey paper [Wil92].

We use a per-thread nursery combined with a global allocator for older objects.

In Chapter 15 we describe the data representation where every heap allocated object
is either a two-word cons cell or a standard object represented as a two-word header
where the �rst of the two words is a tagged pointer to the class object, and the second
of the two words is a pointer to the rack using a special tag for racks. For the purpose
of garbage collection, in many ways, cons cells and two-word headers are treated the
same way. For that reason, we refer to either one as a dyad.

We begin this chapter by describing the algorithms used in the global collector and
the nursery collector. Finally, we describe the synchronization procedure required for
the nursery collectors to collaborate with the global collector.

23.1 Global collector

23.1.1 General description

The global collector is a concurrent collector, i.e., it runs in parallel with the mutator
threads. With modern processors, it is probably practical to assign at least one core

123

124 CHAPTER 23. GARBAGE COLLECTOR

more or less permanently to the global collector. According to current thinking, the
global collector will be a combination of a mark-and-sweep collector and a traditional
memory allocator as implemented by malloc()/free() in a C environment.

We de�ne a global heap divided into two parts called the dyad part and the rack part.
The dyad part is a single vector consisting of two-word blocks. This is where dyads
are allocated. The rack part of the global heap is organized as the space managed by
an ordinary memory allocator. Our adaptation of Doug Lea's memory allocator that
we used for this purpose can be found in Appendix C.

Since all dyads consist of two words, we can use a mark-and-sweep collector for these
objects without su�ering any fragmentation. The advantage of a mark-and-sweep
collector is that objects will never move, which is preferable when they are used as
keys in hash tables and when they are used to communicate with code in foreign
languages that assume that an address of an object is �xed once and for all.

Since the rack part of the global heap is managed by an ordinary memory allocator,
the racks also do not move once allocated. This �xed position is advantageous for
code on some architectures. For example, the correspondence between source code
location and values of the program counter does not have to be updated as a result
of code being moved by the garbage collector.

Another great advantage of racks being in a permanent position is that mutator
threads can cache a pointer without the necessity of this pointer having to be up-
dated as a result of a garbage collection in the global heap. Garbage collection in
the global heap can therefore be done in parallel with the execution of the mutator
threads.

The global collector cycles through the following phases:

1. Idle. In this phase, the global collector is not doing any work.

2. Requesting roots. In this phase, the global collector indicates to each running
application thread that it needs to transmit its part of the global root set to the
global collector. For each blocked application thread, another thread (newly
spawned or taken from a thread pool) does the work on its behalf.

3. Waiting for roots. In this phase, the global collector waits for each application
thread or each spawned thread to �nish indicating its part of the global root
set. Dyads and racks are treated as independent objects.

4. Mark. In this phase, the global collector traces and marks the live objects
starting with the marked roots.

5. Collecting unmarked dyads. In this phase, the global collector scans the dyads
and collects the unmarked ones into a linked list.

23.1. GLOBAL COLLECTOR 125

6. Freeing unmarked racks. In this phase, the global collector iterates through the
allocated racks in the rack part of the heap and frees unmarked racks.

7. Merging free lists. In this phase, the global collector merges the newly created
linked list of unmarked dyads with the existing free list.

8. Clearing mark bits. In this �nal phase, the mark bits used for marking objects
as live are cleared.

23.1.2 Idle phase

In this phase the global collector is not doing any work. Whether it has allocated
threads that are blocked or no threads allocated remains to be decided. During this
phase, when application threads request space from the global heap, objects are allo-
cated white (see below for more information on the tri-color technique).

We maintain a free list of dyads to be used to grant requests for objects by mutator
threads. We start a collection before the free list is empty so that mutator threads
can continue doing useful work during a garbage collection of the global heap. If the
free list of dyads ever becomes empty, then mutator threads must wait until more free
dyads become available as a result of a garbage collection of the global heap.

23.1.3 Requesting roots

See Section 23.3 for more details on this phase. During this phase, when application
threads request space from the global heap, objects are allocated black (see below for
more information on the tri-color technique).

23.1.4 Waiting for roots

In this phase, we wait for each mutator thread to �nish reporting its part of the root
set.

23.1.5 Mark

The global collector uses the traditional tri-color marking technique. Recall that the
tri-color technique works as follows:

• An object belongs to one of three sets, usually called black, white, and gray.

126 CHAPTER 23. GARBAGE COLLECTOR

• Black objects are known to be live. White objects have not yet been traced.
Remaining white objects at the end of a full collection are dead.

• Gray objects represent a frontier between black and white objects. No black
object may refer to a white object.

• Initially, the root objects are colored gray and all remaining objects are colored
white.

• In each iteration, a gray object is selected. The white objects it refers to are
colored gray, and the object itself is then colored black.

• Collection ends when there are no more gray objects.

The root set is determined by requesting that each application thread trace live ob-
jects from their respective roots, and informing the global collector when this proce-
dure reaches an object allocated in the global heap. For application threads that are
blocked, for example waiting for input or output, the global collector spawns a thread
to run the garbage collector on behalf of the application thread.

The global collector maintains two bitmaps for the purpose of marking dyads, one
for black objects and one for gray objects. Each bitmap contains a bit for every
dyad. In addition, the gray bitmap has a multi-level index, making it possible to �nd
an arbitrary gray object in only a few cycles. For each 64-bit word in the primary
bitmap, a bit in a secondary bitmap is maintained. The bit in the secondary bitmap is
set if there is at least one bit set in the 64-bit word in the primary bitmap. Additional
levels of index exist until the last level �ts in a single 64-bit word.

To include an object in the set of gray objects, the address is used to determine a bit
position in the primary bitmap. Before the corresponding bit is set, the 64-bit word
that this bit is contained in is tested to see whether it has all bits cleared. If that is
the case, the bit position in the secondary bitmap is determined, and recursively set
in the same way. Finally the bit is set.

To exclude an object from the set of gray objects, the address is used to determine a
bit position in the primary bitmap. The bit is then cleared. If this operation results in
a 64-bit word that has all bits cleared, then the bit position in the secondary bitmap
is determined, and recursively cleared in the same way.

To �nd a gray object, start at the top-level index and �nd an arbitrary position
contining a bit that is set. This position corresponds to an index in the next-level
index. Repeat the procedure until the primary bitmap is reached.

Since the operation of �nding a gray object might be somewhat costly, we also keep
a �xed-size cache of gray objects, organized as a stack represented as a vector. Gray
objects are initially taken from the cache. Only when the cache is empty is the more

23.1. GLOBAL COLLECTOR 127

costly technique used. Whenever the objects referred to by a gray object are colored
gray, they are also included in the cache (provided there is room in the cache). The
cache could for instance be a vector with around a million elements. Such a vector
would occupy only 8 megabytes of memory which is comparable to the space taken
up by the gray bitmaps.

Every rack has a (single) mark bit as well. Since there is plenty of room in the chunk
that is used for the rack, there is no need to use separate bitmaps for the mark bits
of the racks. Instead, a bit in the size �eld described in Appendix C is used.

Each rack has a single mark bit, so it can be only black or white. This invariant is
simply maintained by the recursive scanning of its contained object, whenever it is
found to be live. The reason for not allowing racks to be gray is that we would then
need to scan the entire rack zone for gray objects, or maintain additional separate
mark bits with indices, just as we do for dyads. 1

23.1.6 Collecting unmarked dyads

We collect unmarked dyads into a list that is separate from the free list used to grant
request for allocations by mutator threads. We do not want requests for allocations
by mutator threads to be granted from this list until we have freed the racks these
dyads refer to.

If the number of dyads recovered is insu�cient, i.e. a new allocation would be triggered
very soon, more memory is requested from the system and used for dyads.

23.1.7 Freeing unmarked racks

During this phase, the racks that are indicated as allocated are traversed, and any
rack that is unmarked is freed.

1We could allow for a rack to be gray, provided there is room for it in the �xed-size cache.
We could even evict a dyad from the cache to make room for a rack. If the global collector
never colors a rack gray, and instead always recursively scans it and colors the object it
contains gray instead, then the only situation where a rack is colored gray would be when
the mutator has a pointer to a rack with no pointer to the header, so there will be very few
racks that are gray. The reason we would like to allow for a rack to be gray sometimes is so
that the mutator will not have unbounded pauses when it is asked for roots.

128 CHAPTER 23. GARBAGE COLLECTOR

23.1.8 Merging free lists

Once the racks of unmarked dyads have been freed, the two free lists are merged into
a single one.

23.1.9 Clearing mark bits

Finally, we clear all the bitmaps used for marking, and we either enter the idle phase,
or start a new collection, depending on the number of dyads left in the free list.

23.1.10 Write barrier

The global collector is subject to a write barrier. Let G be some object in the global
heap, and let N be some object in a nursery. The write barrier must prevent the
existence of a reference from G to N. Therefore, when attempt is made to create
such a reference, N and the objects in its transitive closure are �rst moved to the
global heap. As a result, there are no references from the global heap to objects in
any nursery. The write barrier is implemented as a test, emitted by the compiler, to
determine:

1. whether the object written to is indeed an object in the global heap, and

2. whether the datum being written is a reference to a heap-allocated object (as
opposed to an immediate object).

In many cases, this test can be omitted as a result of type inference, for instance if the
datum being written can be determined at compile time to be an immediate object.

The write barrier is tripped whether the reference to be stored is to an object in the
global heap or to an object in the local heap. In the �rst case, the write barrier is
used to make sure there is not a reference to a white object stored in a black object.
In the second case, the write barrier is used to trigger a migration of local objects to
the global heap.

23.1.11 Protocol

The names of these functions are exported by the package named sicl-global-allocator.

⇒ copy-object object [Function]

23.2. NURSERY COLLECTOR 129

This function takes an object that is allocated in some thread-local heap, copies it,
and returns a copy that is allocated in the global heap. All the objects referred to by
object, including the class of a standard object, must either be immediate objects, or
objects located in the global heap,

⇒ make-array dimensions &key element-type initial-element initial-contents adjustable
�ll-pointer [Function]

This function is similar to the Common Lisp function with the same name. The
di�erence is that this function can not be used to allocate displaced arrays. This
function can be used by client code to allocate arrays that are too big to be allocated
in the thread-local heap. All arguments must either be immediate objects, or objects
located in the global heap.

⇒ allocate-rack size [Function]

Allocate a rack containing size words and return an untagged pointer to it. Be-
cause the pointer is untagged, it will look like a �xnum. If the reference returned by
this function is dropped and not passed to allocate-header then the corresponding
memory is lost forever.

⇒ allocate-header class rack [Function]

This function allocates a new two-word header and returns a tagged pointer to it.
The argument class is the class of the object to be constructed. The argument rack
is the rack that holds the data contained in the object to be constructed. The rack

argument must be an untagged pointer to the rack. The tag speci�c to racks will be
added by this function.

⇒ cons car cdr [Function]

This function allocates a new two-word cons cell and returns a tagged pointer to it.
The arguments have the same meaning as for the standard Common Lisp function
cons.

23.2 Nursery collector

23.2.1 General description

The nursery should be fairly small so as to guarantee short delays, a few megabytes
at most. Instead of a traditional copying collector in which objects that survive a
collection are promoted, we use a sliding collector for the nursery. Such a collector
gives a very precise idea of the age of di�erent objects, so objects would always be

130 CHAPTER 23. GARBAGE COLLECTOR

promoted in the order of oldest to youngest. This technique avoids the problem in
traditional copying collectors where the allocation of some intermediate objects is
immediately followed by a collection, so these objects are promoted even though they
are likely to die soon after the collection. In a sliding collector, promotion will happen
only when a collection leaves insu�cient space in the nursery, at which point only the
number of objects required to free up enough memory would be promoted, and in the
strict order of oldest to youngest.

23.2.2 Allocation

The nursery allocator maintains two pointers into the nursery heap, namely the dyad
free pointer and the rack free pointer. The dyad free pointer always has a smaller
value than the rack free pointer. These pointers are illustrated in Figure 23.1.

previously

allocated

header

previously

allocated

racks

free

space

area

free

pointer

rack

free

pointer

dyad

Figure 23.1: Allocation pointers in the nursery.

To allocate a dyad, the value returned is the existing value of the dyad free pointer
with appropriate tag bits added. Before this value is returned, the dyad free pointer
is incremented by a value corresponding to two full words.

To allocate a rack, the rack free pointer is �rst decremented by a value corresponding
to the number of words in the rack. The new value of the rack free pointer is then
returned. The tag bits (111) for a rack are added.

When a request for allocation would result in less than six free words left in the
nursery, a collection is �rst triggered before the request is granted. The reason we
need these six spare words is explained in Section 23.2.7.

23.2. NURSERY COLLECTOR 131

23.2.3 Finding roots

Several of the phases of the nursery collector involve �nding every root, i.e., every
Common Lisp object that is currently in a processor register or on the stack. What
is done to the object once it is found, depends on the phase.

Finding the roots is a fairly complicated procedure, which is probably why some
implementations prefer traversing the stack conservatively, i.e., considering every word
on the stack that might be a root to actually be one. But such tricks complicate other
aspects of the garbage collector.

In SICL we use precise stack traversal, meaning that we know exactly when a location
contains a root and when it does not.

This precise traversal is complicated by the fact that some registers are so called
callee saves registers, meaning that a particular function invocation does not save the
register to the stack before making a function call, and instead it relies on a the �rst
function on the call chain that needs to use the register to save it and restore it after
use. A direct consequence of this scheme is that a register or a stack location close
to the top of the stack may contain a datum that belongs to a function invocation
arbitrarily further down the stack, and whether that register or stack location is a
root can only be determined by knowing the current value of the program counter in
that function invocation.

To �nd the roots owned by each stack frame, we use the return address stored in the
stack frame immediately above the one we are interested in. That return address is
used to access the frame map and the callee-saves map as described in Section 15.7.
Recall that the frame map is a bitmap that contains an element for each stack location
containing a Common Lisp object that might be heap allocated. For a callee-saves
register that might contain a heap-allocated Common Lisp object, the frame map
indicates the frame location where the previous value of the register was stored. Also
recall that the callee-saves map contains an entry for each callee-saves register. The
value of an entry is the stack location where the previous value of the register was
stored, or 0 of the register is not used by the current invocation.

When the stack traversal starts, the top stack frame belongs to the garbage collector
itself. That frame does not contain any roots. We maintain a table called register
contents table of contents of callee-saves registers. The table is initially �lled with the
current contents of those real registers.

The stack is then traversed, frame by frame, starting with the second one from the
top, and using the return address in the top frame. Initially, the register contents
table contains the current value of those registers when the root-�nding function was
called.

132 CHAPTER 23. GARBAGE COLLECTOR

When a stack frame is visited, the callee-saves map for the current stack frame is
consulted. Recall that this map is indexed by a callee-saves register and contains a
stack location in the current frame. The values of the register entry in the register
contents table and the corresponding stack frame are swapped. After these swaps, the
register contents table contains the callee-saves registers for the next frame, and the
frame locations contain the value of the callee-saved registers owned by the invocation
of this frame.

Next, the frame map is used to determine location of roots. When those roots have
been processed, the next frame is visited.

When the bottom frame of the stack has been processed, we back up by applying
the information in the callee-saves map again, thereby swapping back to the correct
contents of the stack frame.

As an example of �nding the roots, consider a situation where we have three callee-
saves registers (0, 1, and 2), and three stack frames plus the one running the root-
�nding function. Let us call these stack frames A, B, and C, in that order of invoca-
tion. Each stack frame has three local variables. Let us call them a1, a2, a3, b1, b2,
b3, c1, c2, and c3. The variables are kept by each stack frame as follows:

• For stack frame A, every variable contains a Common Lisp object. The vari-
ables a1 and a2 are kept in callee-saves registers 0 and 2 respectively, so the
callers values of those registers have been saved in stack locations −2 and −3
respectively, but this is the bottom frame, so those saved values contain random
data. The variable a3 is kept in a caller-saves register, so it has been saved to
stack location −4 before the call that created the stack frame B.

• For stack frame B, every variable contains a Common Lisp object. The vari-
ables b1 and b2 are kept in callee-saves registers 1 and 2 respectively, so the
callers values of those registers have been saved in stack locations −2 and −3
respectively. Saved location −3 contains a2, but saved location −2 contains
random data, because no previous invocation has used it for any Common Lisp
object. The variable b3 is kept in a caller-saves register, so it has been saved to
stack location −4 before that call created the stack frame C.

• Stack frame C keeps c1 and c2 in callee-saves registers 0 and 2, respectively,
so it has saved the callers values of those registers in stack locations −2 and
−3 respectively. But only c1 is a Common Lisp object, whereas c2 is some
immediate machine value. Saved location −2 contains a1, and saved location
−3 contains b2. It keeps c3 in a caller-saves register, so it has been saved to
stack location −4 before the root-�nding function is invoked.

This initial situation is illustrated in Figure 23.2.

23.2. NURSERY COLLECTOR 133

0

0

0

1

0

0

1

0

0

1

1

1

1

1

1

return address

random

random

a3

return address

random

a2

b3

return address

return address

a1

c3

b2

A

B

C

callee−saves registers

−2

0

−3

0

−2

−3

−2

−3

0

callee−saves

maps

RSP

RBP

frame

maps

c1

c2

b1

0

1

2

c1

c2

b1

0

1

2

register contents table

Figure 23.2: Finding roots, situation before �rst iteration.

134 CHAPTER 23. GARBAGE COLLECTOR

In the �rst iteration, we start by consulting the callee-saves map. Entries that are
not 0 are used to determine a stack location. The contents of that stack location is
swapped with the corresponding element in the register contents table. The result of
this operation is shown in Figure 23.3.

0

0

0

1

0

0

1

0

0

1

1

1

1

1

1

return address

random

random

a3

return address

random

a2

b3

return address

return address

c3

A

B

C

callee−saves registers

−2

0

−3

0

−2

−3

−2

−3

0

callee−saves

maps

RSP

RBP

frame

maps

b1

0

1

2

c1

c2

b1

0

1

2

register contents table

c1

a1

c2

b2

Figure 23.3: Finding roots, �rst iteration.

As Figure 23.3 shows, stack frame C now contains only data belonging to this invo-
cation. The frame map is now consulted. It indicates that stack locations −2 and −4
contain Common Lisp objects, so c1 and c3 are identi�ed as roots.

The initial situation of the second iteration is shown in Figure 23.4.

In the second iteration, we start by consulting the callee-saves map. Entries that are
not 0 are used to determine a stack location. The contents of that stack location is
swapped with the corresponding element in the register contents table. The result of
this operation is shown in Figure 23.5.

23.2. NURSERY COLLECTOR 135

0

0

0

1

0

0

1

0

0

1

1

1

1

1

1

b1

0

1

2

register contents table

a1

b2

return address

random

random

a3

return address

random

a2

b3

return address

return address

c3

A

B

C

callee−saves registers

−2

0

−3

0

−2

−3

−2

−3

0

callee−saves

maps

RSP

RBP

frame

maps

c1

c2

b1

0

1

2

c1

c2

Figure 23.4: Finding roots, situation before second iteration.

136 CHAPTER 23. GARBAGE COLLECTOR

0

0

0

1

0

0

1

0

0

1

1

1

1

1

1

return address

random

random

a3

return address

b3

return address

return address

c3

A

B

C

callee−saves registers

−2

0

−3

0

−2

−3

−2

−3

0

callee−saves

maps

RSP

RBP

frame

maps

c1

c2

b1

0

1

2

c1

c2

0

1

2

register contents table

a1

b1

randomb2

a2

Figure 23.5: Finding roots, second iteration.

23.2. NURSERY COLLECTOR 137

As Figure 23.5 shows, stack frame B now contains only data belonging to this invoca-
tion. The frame map is now consulted. It indicates that stack locations −2, −3, and
−4 contain Common Lisp objects, so b1, b2, and b3 are identi�ed as roots.

The initial situation of the third iteration is shown in Figure 23.6.

0

0

0

1

0

0

1

0

0

1

1

1

1

1

1

return address

random

random

a3

return address

b3

return address

return address

c3

A

B

C

callee−saves registers

−2

0

−3

0

−2

−3

−2

−3

0

callee−saves

maps

RSP

RBP

frame

maps

c1

c2

b1

0

1

2

c1

c2

b1

b2

0

1

2

register contents table

a1

random

a2

Figure 23.6: Finding roots, situation before third iteration.

In the third iteration, we start by consulting the callee-saves map. Entries that are
not 0 are used to determine a stack location. The contents of that stack location is
swapped with the corresponding element in the register contents table. The result of
this operation is shown in Figure 23.7.

As Figure 23.7 shows, stack frame C now contains only data belonging to this invoca-
tion. The frame map is now consulted. It indicates that stack locations −2, −3, and
−4 contain Common Lisp objects, so a1, a2, and a3 are identi�ed as roots.

138 CHAPTER 23. GARBAGE COLLECTOR

0

0

0

1

0

0

1

0

0

1

1

1

1

1

1

return address

a3

return address

b3

return address

return address

c3

A

B

C

callee−saves registers

−2

0

−3

0

−2

−3

−2

−3

0

callee−saves

maps

RSP

RBP

frame

maps

c1

c2

b1

0

1

2

c1

c2

b1

b2

0

1

2

register contents table

random

a1

random

a2

random

Figure 23.7: Finding roots, third iteration.

23.2. NURSERY COLLECTOR 139

We have now reached the bottom stack frame, so we have correctly identi�ed all the
roots. To restore the stack to its initial state, this procedure must be executed in
reverse order. However, the stack can be kept in this state until roots need to be
found a second time.

While it is possible for the garbage collector to handle pointers into arbitrary positions
of a rack,2 in such a situation, there must also be an identi�able root that refers to
the corresponding header. Otherwise, it may be the case that the object is incorrectly
determined to be dead.

23.2.4 Mark phase

The mark phase uses a separate bitmap called the live bitmap. It has a bit for every
word in the nursery. After the mark phase has �nished, if a bit is set in the bitmap,
it means that the corresponding word is part of a live object. The live bitmap is
initialized so that all bits are cleared before the mark phase begins.

The mark phase starts by �nding the roots as described in Section 23.2.3. Only
pointers to dyads are reported in this phase. For every dyad found, the two bits in
the live bitmap corresponding to the two words in the dyad are set to 1. The stack is
scanned from top to bottom and then left in that state.

A �ag determines whether a reference to an object allocated in the global heap should
be marked or not. This �ag is set when the local garbage collection was requested
by the global garbage collector, and cleared when the local garbage collection was
performed as a result of the local heap being full. If a traced object is located in the
heap and the �ag is set, then the global collector is informed that it is live. If the
object is located in the nursery, the corresponding bits in the live bitmap are set.

Once the roots are found, the dyads marked as live in the nursery are traced according
to the class of the object. If the object is a standard object (as indicated by the fact
that the second word contains a rack with the tag reserved for racks (111), then the
class is found in the �rst word of the header. The class object is recursively visited,
and also consulted to determine the number of words in the rack and what words of
the rack may contain pointers to heap-allocated objects. The bits in the live bitmap
corresponding to the words of the rack are marked, and the words that may contain
live object of the rack are recursively visited. If the object is a cons cell, the car

and the cdr are recursively visited. Tracing stops when an object is reached that has
already been traced, or when an object is reached that is located in the global heap.

2Recall that a pointer to a rack is tagged. The same tag is used for a pointer to any
element of a rack.

140 CHAPTER 23. GARBAGE COLLECTOR

The mark phase maintains an integer variable named live space. It is initialized to 0
at the beginning of the mark phase. For every unmarked object in the nursery that
is encountered, the value of the variable is incremented by the size of that object. If
the object is a standard object, then not only is the rack traced, but the size of the
rack is added to the value of the variable as well. When the mark phase is �nished,
this variable contains the total amount of live space in the nursery.

At the end of the mark phase, if the �ag is set, a signal operation is performed on a
semaphore used for synchronization between the local and the global garbage collector.

23.2.5 Promotion phase

After the mark phase has �nished, the value of the variable live space is used to
determine whether some of the objects in the nursery should be promoted. Good
threshold values are yet to be determined, but we think that if more than half the
nursery contains live objects, then some objects should be promoted. The higher the
threshold, the more likely it is that a collection will be triggered soon after the current
one. The lower the threshold, the more likely it is for young objects to be promoted
even though they are likely to die soon.

The other threshold value to be determined is how many objects should be promoted.
We think that, after promotion, around one fourth of the nursery should contain live
objects. The higher the threshold, the more likely it is for another promotion to be
triggered during the next invocation of the collector. The lower the threshold, the
more likely it is for young objects to be promoted even though they are likely to die
soon.

The promotion phase uses a bitmap called the promotion bitmap again containing one
bit per word in the nursery. This bitmap is initialized so that all its bits are cleared.
When an object has been promoted, the �rst word of the dyad contains a forward-
ing pointer pointing to the promoted object in the global heap, and the bit in the
promotion bitmap corresponding to the �rst word of the dyad is set. Similarly, when
a standard object has been promoted, every word of the rack contains a forwarding
pointer, pointing to the new word in the global heap, and the bit in the promotion
bitmap corresponding to that word is set. The reason for treating the rack this way
is that a stack frame may contain local variables that are rack pointers, and those
variables must be updated when the object owning the rack has been promoted. We
do this by replacing the contents of the variable with the forwarding pointer when the
corresponding bit in the promotion bitmap is set.

The promotion phase executes a loop over the live objects that have not yet been
promoted in the nursery, starting from the one with the smallest address. An object

23.2. NURSERY COLLECTOR 141

is skipped if it not live, as indicated by the bit in the live bitmap, and an object is
skipped if it has already been promoted, as indicated by the bit in the promotion
bitmap. If the object is not to be skipped, it is promoted. This means that a copy of
the object is allocated in the global heap. A forward reference is stored in the �rst word
of the dyad of the original object, and a bit is set in the promotion bitmap. Similarly,
the contents of every word of the rack is replaced by a forwarding pointer, and the
bit in the promotion bitmap corresponding to each such word is set. Notice that,
during this phase, there will be references from the global heap to the nursery, but
these references will never be followed by the global collector, and they will disappear
at the end of the promotion phase.

The newly promoted copy is then traced in much the same way as objects are traced
during the mark phase. An object is traced by recursively visiting its contained
objects. When a visited object reference indicates that it has already been promoted,
as indicated by the corresponding bit being set in the promotion bitmap, the reference
is replaced by the forward reference stored in the �rst word of the dyad in the nursery,
and tracing stops. If the visited object has not yet been promoted, then a copy
is allocated in the global heap as described above. The corresponding bits in the
promotion bitmap are set and forwarding pointers are stored, again as above, and the
copy is recursively traced. Notice that if a functional programming style is used, all
objects referred to by the initial copy will have already been promoted. Only side
e�ects can result in an object containing a reference to an object that was allocated
later on in the nursery. Therefore, if a functional style is used, the recursion will be
very shallow. For every object that is being promoted, we keep a tally of the amount
of total space that has been promoted this way. When the total amount of space
is greater than or equal to the threshold that has been determined, the outer loop
stops. We can not, however, stop the tracing in each iteration, because stopping it
prematurely means that there will be references from the global heap to the nursery
remaining after this phase.

When a su�cient number of objects have been promoted, the stack is traversed to �nd
roots that need to be modi�ed as a result of object having been promoted. However,
since the stack is now in a state where every local variable is stored in the stack frame
that owns it as Section 23.2.3 explains, we only need to consult the frame map of each
frame to determine the roots. Whether the root contains a pointer to a dyad or to
some element of a rack, the promotion bitmap for that pointer is consulted. If it is
set, then the root is replaced by the forwarding pointer stored in the dyad or the rack.

Finally, every live object in the nursery that has not been promoted is scanned to
determine any reference to a promoted object. Such a reference is replaced by the
forward reference as before.

When every relevant reference to a promoted object has been updated this way, the

142 CHAPTER 23. GARBAGE COLLECTOR

promotion bitmap is subtracted from the live bitmap. This way, the live bitmap has
a bit set only for live objects that are still in the nursery.

23.2.6 Compaction phase

In the compaction phase, the live bitmaps is used to slide dyads to the beginning of
the nursery heap and to slide racks to the end of the nursery heap. A source pointer
follows live words to be copied, and a target pointer follows available words.

23.2.7 Break table build phase

In the table build phase, the live bitmap is used to construct two break tables between
the new locations of the dyad free pointer and the rack free pointer after compaction.
Each table has the format a0, d0, a1, d1, . . . , an, dn, an+1 where ai is an address and
di is a delta or an o�set. The meaning of the elements of a table is that an address
that was originally between ai and ai+1 should be updated by having di added to
it. One break table is built for dyads and another break table is built for racks. In
the worst case, each of these tables may contain three more words than there are free
words available for it. This is the reason why a collection is triggered when granting
a request for allocation would result in fewer than six words left in the nursery heap.

We use binary search to �nd an entry in a break table.

23.2.8 Pointer adjustment phase

Once the break tables are built, the stack is scanned to �nd roots, and it is also
restored to its initial state as described in Section 23.2.3. For each root that contains
a pointer to the nursery, we determine whether it is pointer to a dyad or to a rack, and
consult the corresponding break table to determine a value to be added to the current
one. Notice that we can handle pointers to any arbitrary position in a rack. The
corresponding break table will indicate the correct amount for such internal pointers
as well.

Next, dyads in the nursery are traversed. For a cons cell, the �rst break table is
consulted in order to adjust both the car and the cdr. For a standard object, the �rst
break table is consulted in order to adjust the class slot and the second break table is
consulted in order to adjust the rack slot. Once the rack slot has been adjusted, the
rack is traversed according to the class in order to determine what words of the rack

23.3. SYNCHRONIZATION BETWEEN COLLECTORS 143

contain Common Lisp objects. For each such word, if it is a heap-allocated object,
the �rst break table is consulted in order to adjust its value.

In the adjust phase, dyads and racks are scanned, and �elds containing pointers are
adjusted according to the o�set table. The o�set table is searched using binary search,
except that a simple caching scheme is used to avoid a full binary search in nearly all
cases.

23.3 Synchronization between collectors

Since each thread is responsible for collecting its own heap and since the global col-
lector can not run until every application thread has run its own collector, we need
to �nd a way of dealing with threads that are stopped for any reason, for instance
waiting for input/output.

We think that in cases like that, one of the threads of the global collector would run
the garbage collector on behalf of the stopped thread. During the execution of the
garbage collector, if the stopped thread becomes unstopped, it must then be prevented
from running application code until the collection has run to completion.

We do this by introducing a variable and two semaphores for each application thread.
The variable and the semaphores are shared between that thread and the global
collector threads. The variable has 4 bit positions with the following meanings:

• application-blocked meaning that the application thread might be blocked
when the bit is set, and is therefore not capable of executing the local garbage
collector. This bit is both set and cleared by the application thread.

• gc-requested meaning that the global collector has requested that the appli-
cation thread run the garbage collector. This bit is set by the global collector
and cleared by the application thread.

• gc-in-progressmeaning that the global collector is running the nursery garbage
collector on behalf of the thread. This bit is both set and cleared by the global
collector.

• application-waiting meaning that the application is waiting for the global
collector to �nish the garbage collection on behalf of the application thread.

The two semaphores work as follows:

• global-gc-may-proceed. This semaphore is initialized to 0. When the global
collector requests that an application thread run the local garbage collector

144 CHAPTER 23. GARBAGE COLLECTOR

it waits on this semaphore. The application thread signals this semaphore,
indicating that all objects in the global heap reachable from the local heap have
been marked.

• application-may-execute. This semaphore is initialized to 0. When an ap-
plication thread awakes after having been blocked, it checks whether the global
collector is currently executing on behalf of this application thread. If so, the
application thread waits on this semaphore. When the global collector has �n-
ished executing on behalf of this thread, it signals this semaphore, allowing the
application thread to continue its execution.

23.3.1 Running application thread

At every safe point (function call, function return, and a branch to an inferior ad-
dress3), the application thread consults the shared variable. If the gc-requested bit
is set, then it clears that bit and runs the nursery garbage collector. At the end of
the collection, it signals the global-gc-may-proceed semaphore indicating to the
global collector that it has �nished, and �nally continues the application thread. No
synchronization is required to read the shared variable, because once the gc-request
bit is set, no other bit is going to move as the result of any action on the part of the
global collector.

23.3.2 Application thread about to block

When there is a possibility that an application thread is about to block, for example
when it is about to execute some input or output operation, it must inform the global
collector that it might be unable to run the local garbage collector itself, and that the
global collector may have to run it on behalf of the application thread.

The application starts by reading the shared variable into an ordinary lexical variable.
If the gc-request bit is set, it clears the bit and runs the nursery garbage collector. At
the end of the collection, it signals the global-gc-may-proceed semaphore indicating
to the global collector that it has �nished, and then starts over by reading the variable
again. This action is repeated until the gc-request bit is cleared.

When the gc-request bit is cleared, it sets the application-blocked bit in a sec-
ond local copy of the shared variable. It then performs a CAS operation to set the
application-blocked bit in the shared variable. Should this operation fail, then it

3To minimize the overhead in case of a very tight loop, we will use loop unrolling so that
a branch to an inferior address will be less frequent.

23.3. SYNCHRONIZATION BETWEEN COLLECTORS 145

means that the gc-request bit has been set since the shared variable was read the
�rst time. The application thread then starts the entire operation over again.

If the CAS operation succeeds, it means that the global collector has been informed
that, if it needs for this nursery heap to be garbage collected, it has to do it on behalf
of the thread. The application thread can now perform the operation that might block
the thread.

23.3.3 Application thread waking up after block

When the application thread wakes up after having been blocked, there is a possibility
that the global garbage collector is in the process of running the nursery collector on
behalf of the application thread. If that is the case, then the application thread must
wait until the garbage collection is �nished.

The application thread starts by reading the shared variable into an ordinary lexical
variable, and it also makes a second copy. If the gc-in-progress bit is cleared, it
then clears the application-blocked bit in the second copy and performs a CAS
operation. If the CAS operation succeeds, this means that the global collector is not
running on behalf of the application thread, and will not do so because it has been
informed that the application thread is not blocked. The application thread then
returns to its normal operation without any further action.

If the CAS operation fails, then that means that the global collector has started
a collection on behalf of the application thread since the shared variable was read.
Then the application thread reads the shared variable again. If the gc-in-progress
bit is set, then the application thread clears the application-blocked bit and sets
the application-waiting bit in the second local copy of the shared variable. It then
performs a CAS operation. If the CAS operation succeeds, it means that the global
collector is still running the nursery collector on behalf of the application thread,
and that the global collector has been informed that, when the nursery collection is
�nished, it should signal the application-may-execute semaphore.

23.3.4 Preparing for a global collection

Before a global collection can take place, each nursery must �rst be collected, and
references from the nurseries to the global heap must be marked so that the global
collector will keep the referenced objects.

For each application thread, the following actions are performed:

146 CHAPTER 23. GARBAGE COLLECTOR

The contents of the shared variable is read into an ordinary lexical variable, and a
second copy of it is made. The application-blocked bit is examined.

1. If it is cleared, then the gc-request bit is set in the second copy, and a CAS
operation is attempted.

(a) If the operation succeeds, then that means that the application thread
is still not blocked and it has been properly informed that it is expected
to run a nursery collection. The global-gc-may-proceed semaphore for
this application thread is added to a set of such semaphores.

(b) If the operation fails, then that means that the application has been
blocked in the meantime. The entire operation is then restarted by reading
the shared variable again.

2. If it is set, then the application is blocked. Then the gc-in-progress bit of
the second copy is set, and a CAS operation is attempted.

(a) If the operation succeeds, then that means that the application thread
is still blocked, and that it has been properly informed that a nursery
collection on its behalf is pending. A new thread (or an existing one from
a pool) is assigned to do a nursery collection on behalf of the application
thread, and the thread is added to a set of such threads.

(b) If the operation fails, then that means that the application is no longer
blocked. The entire operation is then restarted by reading the shared
variable again.

When all the application threads have been processed this way, the global garbage
collector executes a wait operation sequentially on each semaphore in the saved set.

Then the global collector waits for each the threads in the set of threads doing a
nursery collection on behalf of an application thread to �nish. When such a thread
�nishes, the shared variable is read into an ordinary lexical variable and a second copy
is made. The application-waiting bit is examined.

1. If it is set, the global collector clears the bit, clears the gc-in-progress bit,
and executes a signal operation on the application-may-execute semaphore.
No further synchronization is required.

2. If it is cleared, then that means that the application is still blocked. Then the
global collector clears the gc-in-progress bit in the second copy and attempts
a CAS operation.

23.4. IMPLEMENTATION 147

(a) If the CAS operation succeeds, then it means that the operation is still
blocked, and it has been informed that it can safely execute application
code when it wakes up.

(b) If the CAS operation fails, then the application may no longer be blocked.
The entire operation is then restarted by reading the shared variable again.

23.4 Implementation

In most systems, the garbage collector is implemented in some language other than
Common Lisp. However, we imagine using Common Lisp together with some addi-
tional low-level primitives for accessing memory by address instead.

148 CHAPTER 23. GARBAGE COLLECTOR

Chapter 24

Debugger

Part of the reason for SICL is to have a system that provides excellent debugging
facilities for the programmer. The kind of debugger we plan to support is described
in a separate repository.1 In this chapter, we describe only the support that SICL
contains in order to make such a debugger possible.

The execution of every function starts by testing a �ag passed in a register.2 This �ag
indicates whether the current thread is being debugged. The function contains two
versions of the code, called the normal version and the debugging version.3 The �ag
determines which version is chosen. Thus, when the thread is not being debugged,
the only overhead is this single test at the beginning of the function. Furthermore,
once the test is done, the register is no longer needed for this purpose, and is at the
disposal of the register allocator for the remainder of the function body.

The normal version is used when the thread is not run under the control of the debug-
ger, so this version does not contain any code for communicating with the debugger.
Furthermore, this version is highly optimized. In particular, variables that occur in
the source code may have been eliminated by various optimization passes. A function
call in the normal version clears the �ag register, so that the callee can choose its
normal version as well.

The debugging version starts by examining a special variable that contains information
about the current thread. In particular, this information includes a table in the form
of a bit vector containing summary information about breakpoints. In this version

1See https://github.com/robert-strandh/Clordane
2For the x86-64 platform, it is register RAX.
3This idea was suggested by Michael Raskin.

149

150 CHAPTER 24. DEBUGGER

of the function body the compiler inserts a call to a small subroutine before and
after every form to be evaluated. The subroutine does not use the full Common Lisp
function-call protocol. Instead, it is just a very fast call that can be done with a jsr

instruction (or equivalent) on must architectures.

The subroutine does a test in two steps. In the �rst step, the value of the program
counter is taken modulo some reasonably large value such as 256, and a the bit vector
is queried to see whether the corresponding entry is a 1. If it is 0, the subroutine
simply returns. This �rst step will slow down every debugged thread a little bit, but
most of the time, the value will be 0, and then, normal function execution is resumed.

If the entry in the bit vector turns out to be 1, then the �nal test is made. The
program counter is checked against a hash table in the thread instance to see whether
some action must be taken. If so, the thread gives up control to the debugger.

A function call in the debugging version sets the �ag register to 1, so that the callee
can choose its debugging version as well. The debugging version does not have op-
timizations applied to it that may make debugging harder. Lexical variables that
appear in source code may be kept, or code may be included that can compute their
values from the lexical variables that are kept, for the duration of their scope.

Chapter 25

Processing arguments

In this chapter, we describe how processing arguments is accomplished by inserting
HIR instructions immediately after HIR code is generated from an abstract syntax
tree. By doing it this way, we obtain several advantages:

• We simplify the translation of HIR code to LIR later on the translation process.

• HIR transformations such as constant hoisting and fdefinition hoisting can
be applied to the argument-processing code, thereby simplifying this code.

• The HIR instructions introduced are subject to various HIR transformations
such as value numbering, constant propagation, etc.

Each type of parameter is is handled by a di�erent module. In addition, because of the
complexity of initializing keyword parameters, that module is is further subdivided.

Two new HIR instructions are used in order to accomplish the argument processing:

• The compute-argument-count-instruction has no inputs, and a single out-
put. It is responsible for computing the total number of arguments passed to
the function.

• The argument-instruction has one input and one output. The input is a
datum that must be a non-negative �xnum. The output is the argument with an
index represented by the value of the input, starting at 0 for the �rst argument.

The overall organization of the modules for initializing parameters is shown in Fig-
ure 25.1.

151

152 CHAPTER 25. PROCESSING ARGUMENTS

fdefinition

ERROR

error

compute

AC

argument count

only if

Nr > 0

check minimum

argument count

only if

no &REST

and no &KEY

check maximum

argument count

initialize required

parameters

only if

&REST

parameters

initialize optional

no

more

arguments

only if

&KEY

only if

&REST

initialize keyword only if

&KEY

create rest

parameter

parameters

initialize rest parameter

to NIL

parameters to NIL

initialize key

always

more

arguments

only if

or &REST

&OPTIONAL

or &KEY

Figure 25.1: Processing all arguments.

25.1. CALLING ERROR 153

25.1 Calling error

To minimize the clutter in many of the �gures in this chapter, when an error situation
is detected, a box labeled �error� is shown. But this box is slightly more compli-
cated than a single instruction. The complete sequence of instructions is shown in
Figure 25.2.

funcall

unreachable

error
condition

name

more

args

Figure 25.2: Calling error.

As Figure 25.2 shows, the sequences consists of two instructions.

The �rst instruction is a funcall-instruction that calls the function error as com-
puted by the �rst instruction in Figure 25.1. This instruction takes more arguments
to be passed to error. The �rst additional argument is a constant input contain-
ing the name of the condition class to signal. Remaining additional arguments are
initialization arguments for the particular condition class.

The second instruction is an unreachable-instruction. An additional instruc-
tion is required, because the funcall-instruction has a single successor. The
unreachable-instruction indicates that control can not reach this point. This in-
struction has no successors.

25.2 Checking the minimum argument count

Unless there are no required parameters, there is a minimum allowed value for the
argument count, and it is equal to the number of required parameters. The HIR code
for this check is simple and is illustrated by Figure 25.3.

As �gure Figure 25.1 shows, this test is only inserted when the number of required pa-
rameters is strictly greater than 0. The input labeled �Nr� in Figure 25.3 is a constant

154 CHAPTER 25. PROCESSING ARGUMENTS

AC

fixnum−

Nr

error

less

Figure 25.3: Checking minimum argument count.

input (known at compile time) representing the number of required parameters, and
the input labeled �AC� is the lexical location computed by the compute-argument-count
instruction in Figure 25.1.

25.3 Checking the maximum argument count

Unless there is a &rest parameter or there are &key parameters, there is a maximum
allowed value for the argument count, and it is equal to the sum of the number of
required parameters and the number of optional parameters. The HIR code for this
check is also simple, and is illustrated by Figure 25.4.

AC

fixnum−

error

Nr+No

not−greater

Figure 25.4: Checking maximum argument count.

25.4. INITIALIZING REQUIRED PARAMETERS 155

As �gure Figure 25.1 shows, this test is only inserted when there is no &rest parameter
and no &key parameters. The input labeled �Nr+No� in Figure 25.4 is a constant
input (known at compile time) representing the number of required parameters plus
the number of optional parameters, and the input labeled �AC� is again the lexical
location computed by the compute-argument-count instruction in Figure 25.1.

25.4 Initializing required parameters

Figure 25.5 illustrates the HIR code for initializing required parameters.

argument

argument

0

1

Nr−1

required

parameter 0

required

parameter 1

required

parameter Nr−1

argument

nop

Figure 25.5: Initializing required parameters.

The number of stages is determined at compile time and is equal to the number of

156 CHAPTER 25. PROCESSING ARGUMENTS

required parameters. For each parameter, the next argument (starting with 0) is
assigned to that parameter.

As Figure 25.1 suggests, this procedure can be applied even when there are no required
parameters. In this case, the result consists only of the �nal nop-instruction.

25.5 Initializing optional parameters

Figure 25.6 illustrates the HIR code for initializing optional parameters.

As Figure 25.6 shows, there are two main branches in this code, the left branch and
the right branch. The control �ow starts in the right branch, and continues in that
branch if until there are no more arguments. At that point, control is transferred to
the left branch where the remaining optional parameters are initialized to nil.

As Figure 25.6 also shows, the code ends with a test to check whether there are no
more argument, even though this test is not required in order to decide how any more
optional parameters should be initialized (because there are no more at that point).
The reason for the existence of this test is so that the left branch (no more arguments)
can be used to determine whether all keyword parameters should be initialized to nil,
as illustrated by Figure 25.1.

As with the required parameters, this procedure can be applied even when there are
no optional parameters. In this case, it degenerates into the last test, i.e. it determines
whether there are more arguments than required parameters.

25.6 Initializing keyword parameters to nil

When there are no more arguments after all the required and all the optional param-
eters have been initialized, then, if there are keyword parameters, then they can all
be initialized to nil. This procedure is shown in Figure 25.7.

As Figure 25.1 shows, this HIR code is added only if the lambda list contains &key
parameters.

25.7 Creating the &rest parameter

Figure 25.8 illustrates how the &rest parameter is created.

25.7. CREATING THE &REST PARAMETER 157

AC

fixnum−

Nr

not−greater

argument

<−

Nr

Topt 0

supplied 0

NIL

NIL

<−

<−

argument

<−

T

NIL

NIL

<−

<−

supplied No−1

opt No−1

Nr+No−1

fixnum−

not−greater

Nr+No−1

fixnum−

not−greater

Nr+No

nopnop

no more arguments maybe more arguments

Figure 25.6: Initializing optional parameters.

158 CHAPTER 25. PROCESSING ARGUMENTS

NIL

<−

NIL

<−

NIL

<−

NIL

<−

key 0

supplied 0

key Nk−1

supplied Nk−1

Figure 25.7: Initializing keyword parameters to nil.

25.7. CREATING THE &REST PARAMETER 159

fixnum−

sub

fdefinition

CONS

cons

AC 1

index

funcall

values

M−>F

1

fixnum−

sub

out

Nr+No

fixnum−

less

argument

arg

rest

Figure 25.8: Creating the rest parameter.

160 CHAPTER 25. PROCESSING ARGUMENTS

As Figure 25.8 shows, there is a loop that starts with the last argument and ends with
the �rst remaining argument after the required and the optional parameters have been
initialized. In each iteration of the loop, the function cons is called in order to add
another argument to the beginning of the list.

As shown in Figure 25.1, the &rest parameter, if present, has already been initialized
to nil before this HIR code is executed.

25.8 Initializing keyword parameters

Figure 25.9 illustrates how keyword parameters are initialized.

As Figure 25.9 shows, we subdivide the initialization of keyword arguments further.
We start by checking that there is an even number of keyword argument. After that,
each keyword parameter is initialized in turn by a separate traversal of the remaining
arguments. Finally, if required, we check whether the keyword :allow-other-keys

is present in the argument list, and if so, what value it has. We end the process by
checking the validity of each keyword argument, again only if required.

25.8.1 Checking that the number of arguments is even

Figure 25.10 illustrates the technique for checking that there is an even number of
arguments to be used for initializing keyword parameters. Recall from Figure 25.1
that this code is executed only when there are more arguments than the sum of the
number of required and the number of optional parameters.

As Figure 25.10 shows, we simply subtract the sum of the number of required and
the number of optional parameters from the argument count, and then take the re-
mainder when this di�erence is divided by 2. If that remainder is 0, then we have an
even number of remaining arguments. Otherwise, we call error with an appropriate
condition type.

25.8.2 Initializing a single keyword parameter

Figure 25.11 illustrates how a single keyword parameter is initialized.

As Figure 25.11 shows, the essence of the code consists of a loop over the remaining
arguments, starting from the beginning. Each time around the loop, 2 is added to the
index.

25.8. INITIALIZING KEYWORD PARAMETERS 161

check even

number of

keyword arguments

check

:allow−other−keys

check every

out

initialize keyword

parameter 0

initialize keyword

parameter Nk−1

keyword

false true

only if no

&allow−other−keys

only if no

&allow−other−keys

Figure 25.9: Processing keyword arguments.

162 CHAPTER 25. PROCESSING ARGUMENTS

fixnum−

sub

AC Nr+No

value 2

fixnum−equal

error

quotient remainder

0

fixnum−divide

(floor)

nop

Figure 25.10: Checking that there is an even number of keyword arguments.

25.8. INITIALIZING KEYWORD PARAMETERS 163

Nr+No

index

<−

fixnum−

not−greater

AC

argument

keyword

eq

fixnum−add

1

temp

argument

2

fixnum−add

:keyword

arg T

<−

out

supplied−p

<−

NIL

NIL

<−

Figure 25.11: Initializing one keyword parameter.

164 CHAPTER 25. PROCESSING ARGUMENTS

When an eq comparison between the argument a the constant symbol representing the
keyword in question yields true, then the loop is exited, and the argument immediately
following the keyword is used to initialize the parameter, and the constant value t is
used to initialize the supplied-p parameter.

If the loop reaches the end without the eq comparison yielding true, nil is used to
initialize both the keyword parameter and the supplied-p parameter.

25.8.3 Checking the presence of :allow-other-keys

Figure 25.12 illustrates how the check is made whether the keyword argument :allow-other-keys
is present, and if so, whether it has a true value. As Figure 25.9 shows, this check is
only performed when the lambda list does not have the lambda-list keyword &allow-other-keys
in it.

The way the HIR code in Figure 25.12 works, is similar to the way the HIR code of
�g-initialize-one-keyword-parameter for initializing a single keyword parameter works.
The di�erence is that there is no suppolied-p parameter, and the value of the argu-
ment is not kept. Instead, the value, if the keyword is present, is just compared for
equality to nil. If the keyword is not present, or if the value is nil, then the left
branch is chosen. Otherwise, the right branch is chosen.

Notice that the semantics correspond to that of ordinary keyword arguments, in that
if there are several occurrences of the keyword in the argument list, then it is the value
of the �rst occurrence that determines the result.

25.8.4 Checking the validity of every keyword

The �nal step of processing keyword arguments is to verify that each keyword given
is valid. This step is illustrated by Figure 25.13.

As shown in Figure 25.1, this step is executed only when the lambda list keyword
&allow-other-keys is absent from the lambda list, emph either the keyword :allow-other-keys
is absent from the arguments or it has the value nil.

25.8. INITIALIZING KEYWORD PARAMETERS 165

Nr+No

index

<−

fixnum−

not−greater

AC

false

argument

keyword:allow−other−keys

eq

fixnum−add

1

temp

argument

value NIL

eq

true

2

fixnum−add

Figure 25.12: Checking for :allow-other-keys

166 CHAPTER 25. PROCESSING ARGUMENTS

fixnum−

add

2

:allow−other−keys

<−

argument

eq

eq

Nr+No

keyword:kwd1

:kwnd2

:kwdNk

eq

eq

index AC

error

fixnum−

less

out

nop

Figure 25.13: Checking the validity of every keyword.

Chapter 26

Processing return values

In this chapter, we describe how processing return values is accomplished by inserting
HIR instructions immediately after HIR code is generated from an abstract syntax
tree. As with the code for processing arguments, by doing it this way, we obtain
several advantages:

• We simplify the translation of HIR code to LIR later on the translation process.

• HIR transformations such as constant hoisting and fdefinition hoisting can
be applied to the code for processing return values, thereby simplifying this
code.

• The HIR instructions introduced are subject to various HIR transformations
such as value numbering, constant propagation, etc.

26.1 Replacing the multiple-to-fixed-instruction

Clients that would like to use this technique for processing return values would have a
HIR transformation that replaces the multiple-to-fixed-instruction. Recall that
the multiple-to-fixed-instruction accesses the distinguished location for multiple
values and copies the values in that location to individual lexical locations that make
up the outputs of the instruction.

The code that replaces the multiple-to-fixed-instruction is shown in Figure 26.1.

In Figure 26.1, N is the number of outputs of the multiple-to-fixed-instruction.

167

168 CHAPTER 26. PROCESSING RETURN VALUES

<−

NILN−1

RV

NILN−2

RV <−

0

var N−1

var 0

var N−2

compute
values count

RVCN−1

fixnum
less

N−2

fixnum
less

RV

Figure 26.1: Processing return values.

26.2. REPLACING THE FIXED-TO-MULTIPLE-INSTRUCTION 169

The technique relies on the assumption that there are usually at least as many return
values as the number of outputs of the multiple-to-fixed-instruction. If that
is the case, then the �rst comparison succeeds, and no other comparison need to be
executed.

The last comparison instruction takes the constant 1 as its �rst input. We do not
need to check for the number of return values being greater than 0, because we are
always allowed to access return value number 0, even when there are no return values.
A function that returns no values puts nil in the �rst values location so that a caller
that wants exactly one return value (the most common case) does not need to check
the number of return values.

Again referring to Figure 26.1, RVC is a lexical location holding the return-values
count as a �xnum. Instructions labeled RV are instruction of type return-value-instruction
that each takes a constant �xnum input, accesses the value with that index in the
distinguished values location and assigns that value to the lexical location of its out-
put. The locations labeled �var 0� to �var N-1� in Figure 26.1 are the outputs of the
multiple-to-fixed-instruction that is being replaced.

26.2 Replacing the fixed-to-multiple-instruction

Clients that would like to use this technique for processing return values would have a
HIR transformation that replaces the fixed-to-multiple-instruction. Recall that
the fixed-to-multiple-instruction copies the values of individual lexical locations
into the distinguished location for multiple values.

The code that replaces the fixed-to-multiple-instruction is shown in Figure 26.2.

In Figure 26.1, N is the number of inputs of the fixed-to-multiple-instruction.
The initialize-values-instruction takes has a �xnum input that initializes the
distinguished values location to contain N values.

Following the initialization are N occurrences of the set-return-value-instruction,
each taking as an input a �xnum indicating the index of the value, and the cor-
responding input of the fixed-to-multiple-instruction. If there are no inputs,
i.e. if no values are to be returned, there is nevertheless one occurrence of the
set-return-value-instruction with inputs 0 and the constant nil.

170 CHAPTER 26. PROCESSING RETURN VALUES

values

N

set return

value

set return

value

val 0

val N−1

0

N−1

return
initialize

Figure 26.2: Setting return values.

Part III

Backends

171

Chapter 27

x86-64

27.1 Register usage

The standard calling conventions de�ned by the vendors, and used by languages such
as C use the registers as follows:

Name Used for Saved by

RAX First return value Caller
RBX Optional base pointer Callee
RCX Fourth argument Caller
RDX Third argument, second return value Caller
RSP Stack pointer
RBP Frame pointer Callee
RSI Second argument Caller
RDI First argument Caller
R8 Fifth argument Caller
R9 Sixth argument Caller
R10 Temporary, static chain pointer Caller
R11 Temporary Caller
R12 Temporary Callee
R13 Temporary Callee
R14 Temporary Callee
R15 Temporary Callee

We mostly respect this standard, and de�ne the register allocation as follows:

173

174 CHAPTER 27. X86-64

Name Used for Saved by

RAX First return value Caller
RBX Dynamic environment Callee
RCX Fourth argument, third return value Caller
RDX Third argument, second return value Caller
RSP Stack pointer
RBP Frame pointer Caller
RSI Second argument, fourth return value Caller
RDI First argument, value count Caller
R8 Fifth argument Caller
R9 Argument count, �fth return value Caller
R10 Static env. argument Caller
R11 Scratch Caller
R12 Register variable Callee
R13 Register variable Callee
R14 Register variable Callee
R15 Register variable Callee

27.2 Representation of function objects

• A static environment.

• The entry point of the function as a raw machine address. Since entry points
are word aligned, this value looks like a �xnum.

27.3 Calling conventions

Figure 27.1 shows the layout of a stack frame.

Normal call to external function, passing at most 5 arguments:

1. Compute the callee function object and the arguments into temporary locations.

2. Store the arguments in RDI, RSI, RDX, RCX, and R8.

3. Store the argument count in R9 as a �xnum.

4. Load the static environment of the callee from the callee function object into
R10.

5. Push the value of RBP on the stack.

27.3. CALLING CONVENTIONS 175

caller

frame

return

address

caller

data

with

dynamic

extent

established by owner.

local

saved

callee−saved

registers

RSP

RBP
RBP

Figure 27.1: Stack frame for the x86-64 backend.

6. Copy the value of RSP into RBP, establishing the (empty) stack frame for the
callee.

7. Load the entry point address of the callee from the callee function object into
an available scratch register, typically RAX.

8. Use the CALL instruction with that register as an argument, pushing the return
address on the stack and transferring control to the callee.

Normal call to external function, passing more than 5 arguments:

1. Compute the callee function object and the arguments into temporary locations.

2. Subtract 8(N − 3) from RSP, where N is the number of arguments to pass,
thus leaving room in the callee stack frame for the N − 5 arguments, the return
address, and the caller RBP.

3. Store the �rst 5 arguments in RDI, RSI, RDX, RCX, and R8.

4. Store the remaining arguments in [RSP+0], [RSP+8], . . ., [RSP+8(N − 6)] in
that order, so that the sixth argument is on top of the stack.

5. Store the argument count in R9 as a �xnum.

176 CHAPTER 27. X86-64

6. Load the static environment of the callee from the callee function object into
R10.

7. Store the value of RBP into [RSP + 8(N - 4)]

8. Copy the value of RSP+8(N − 4) into RBP, establishing the stack frame for the
callee. The instruction LEA can be used for this purpose.

9. Load the entry point address of the callee from the callee function object into
an available scratch register, typically RAX.

10. Use the CALL instruction with that register as an argument, pushing the return
address on the stack and transferring control to the callee.

By using a CALL/RET pair instead of (say) the caller storing the return address in its
�nal place using some other method, we make sure that the predictor for the return
address of the processor makes the right guess about the eventual address to be used.

Figure 27.2 shows the layout of the stack upon entry to a function when more than 5
arguments are passed. Notice that the return address is not in its �nal place, and the
�nal place for the return address is marked �unused� in Figure 27.2.

caller

frame

caller

arguments

return

address

unused

RSP

RBP
RBP

N − 5

Figure 27.2: Stack frame at entry with more than 5 arguments.

Tail call to external function, passing at most 5 arguments:

1. Compute the callee function object and the arguments into temporary locations.

2. Store the arguments in RDI, RSI, RDX, RCX, and R8.

3. Store the argument count in R9 as a �xnum.

27.3. CALLING CONVENTIONS 177

4. Load the static environment of the callee from the callee function object into
R10.

5. Copy the value of RBP−8 to RSP, establishing the stack frame for the callee,
containing only the return address. The LEA instruction can be used for this
purpose.

6. Load the entry point address of the callee from the callee function object into
an available scratch register, typically RAX.

7. Use the JMP instruction with that register as an argument, transferring control
to the callee.

Tail call to external function, passing more than 5 arguments:1

For internal calls there is greater freedom, because the caller and the callee were
compiled simultaneously. In particular, the caller might copy some arbitrary pre�x of
the code of the callee in order to optimize it in the context of the caller. This pre�x
contains argument count checking and type checking of arguments. The address to
use for the call is computed statically as an o�set from the current program counter,
so that a CALL instruction with a �xed relative address can be used. Furthermore,
the caller might be able to avoid loading the static environment if it is known that
the callee uses the same static environment as the caller.

Upon function entry after an ordinary call, when more than 5 arguments are passed,
the callee must pop the return address o� the top of the stack and store it in its
�nal location. This can be done with a single POP instruction, using [RBP−8] as the
destination. When fewer than 5 arguments are passed, the return address is already
in the right place.

Return from callee to caller with no values:

1. Store NIL in RAX.

2. Store 0 in RDI, represented as a �xnum.

3. Store the value of RBP−8 in RSP so that the stack frame contains only the return
address. To accomplish this e�ect, the callee can use the LEA instruction.

4. Return to the caller by executing the RET instruction.

Return from callee to caller with a 1− 5 values:

1. Store the values to return in RAX, RDX, RCX, RSI, R9.

1FIXME: Determine the protocol.

178 CHAPTER 27. X86-64

2. Store the number of values in RDI, represented as a �xnum.

3. Store the value of RBP−8 in RSP so that the stack frame contains only the return
address. To accomplish this e�ect, the callee can use the LEA instruction.

4. Return to the caller by executing the RET instruction.

Return from callee to caller with more than 5 values:

1. Store the �rst 5 values to return in RAX, RDX, RCX, RSI, R9.

2. Store the remaining (up to 15) values in [RBP-8], [RBP-16], etc.

3. Store the number of values in RDI, represented as a �xnum.

4. Store the value of RBP−8 in RSP so that the stack frame contains only the return
address. To accomplish this e�ect, the callee can use the LEA instruction.

5. Return to the caller by executing the RET instruction.

27.4 Use of the dynamic environment

The dynamic environment is an ordinary list of entries allocated on the stack rather
than on the heap. The head of the list is pointed to by the register RBX. (See Sec-
tion 27.1.)

⇒ dynamic-environment-entry [Class]

This class is the base class of all entry classes of the dynamic environment.

⇒ exit-point-entry [Class]

This class is a subclass of the class named dynamic-environment-entry. It is a super-
class of all entries that represent exit points. The Common Lisp standard is somewhat
unclear as to what constitutes and exit point. The glossary includes unwind-protect
in the set of exit points. However, section 5.2 suggests otherwise. Step 1 of the proce-
dure described in section 5.2 is to �abandon� all intermediate exit points. But with the
de�nition in the glossary, the exit points representing unwind-protect forms would
also be �abandoned�, whatever that might mean.

Here, we restrict the term exit point to be program points established by catch,
block, and tagbody.

⇒ valid-p exit-point-entry [Generic Function]

27.4. USE OF THE DYNAMIC ENVIRONMENT 179

This generic function returns true if and only if exit-point-entry is valid, i.e. if it has
not been invalidated (or �abandoned�) since its creation.

⇒ invalidate exit-point-entry [Generic Function]

This generic function invalidates the entry exit-point-entry. After this function has
been called, a call to valid-p with exit-point-entry as an argument always returns
false.

⇒ special-binding-entry [Class]

Instances of this class are used to represent the binding of a special variable. It is a
subclass of the class named dynamic-environment-entry.

⇒ :symbol [Initarg]

The value of this initarg is the symbol representing the special variable to be bound.

⇒ :value [Initarg]

The value of this initarg is the value to which the special variable is to be bound.

⇒ symbol special-binding-entry [Generic Function]

This generic function returns the symbol passed as the value of the initarg :symbol

when the entry special-binding-entry was created.

⇒ value special-binding-entry [Generic Function]

This generic function returns the current value of the special variable represented by
special-binding-entry.

⇒ (setf value) new-value special-binding-entry [Generic Function]

This generic function sets the current value of the special variable represented by
special-binding-entry.

⇒ catch-entry [Class]

An instance of this class is used to represent a catch tag. It is a subclass of the class
named exit-point-entry.

⇒ :tag [Initarg]

The value of this initarg is the catch tag represented by this entry.

⇒ tag catch-entry [Generic Function]

This generic function returns the value of the :tag initarg that was given when catch-
entry was created.

180 CHAPTER 27. X86-64

⇒ block/tagbody-entry [Class]

An instance of this class is used to represent an exit point created by block or tagbody.
It is a subclass of the class named exit-point-entry.

⇒ :identifier [Initarg]

The value of this initarg is a unique identi�er for this entry. This identi�er becomes
part of the static environment of any function nested inside the block or tagbody

form that contains a return-from or a go to this form.

⇒ identifier block/tagbody-entry [Generic Function]

The value returned by a call to this generic function is the identi�er of the block/tagbody-entry
as given by the initarg :identifier when the entry was created.

⇒ unwind-protect-entry [Class]

This class is a subclass of the class named dynamic-environment-entry.

⇒ :cleanup-thunk [Initarg]

The value of this initarg is a thunk that encapsulates the cleanup forms of the
unwind-protect form.

⇒ cleanup-thunk unwind-protect-entry [Generic Function]

A call to this generic function returns the cleanup thunk of unwind-protect-entry that
was supplied as the value of the initarg :cleanup-thunk when the entry was created.

⇒ multiple-values-entry [Class]

This class is a subclass of the class named dynamic-environment-entry. It is used to
store a sequence of multiple values when the registers and stack entries for this purpose
are insu�cient. In particular, multiple-value-prog1 and multiple-value-call

may need one or more of these entries.

catch is implemented as a call to a function. This function establishes a catch tag
and calls a thunk containing the body of the catch form.

throw searches the dynamic environment for an entry with the right catch tag which
is also valid. The point to which control is to be transferred is stored as the return
value of the stack frame containing the catch tag.

A block form may establish an exit point. In the most general case, a return-from is
executed from a function lexically-enclosed inside the block with an arbitrary number
of intervening stack frames. When this is the case, upon entry to the block form,
a block/tagbody entry with a fresh identi�er is established. When a return-from

27.5. TRANSFER OF CONTROL TO AN EXIT POINT 181

is executed, the point to which control is to be transferred is known statically. The
identi�er is also stored in a lexical variable in the static environment of closures es-
tablished inside the block form that may execute a corresponding return-from form.
When the block form is exited normally, the block/tagbody entry is popped o� the
stack and o� the dynamic environment.

return-from accesses the identi�er from the static environment and then searches
the dynamic environment for a corresponding identi�er in a block/tagbody entry. If
one with the right identi�er is found, the lexical environment is restored, and control
is transferred to the statically known address.

A tagbodymay establish several exit points. In the most general case, a go is executed
from a function lexically-enclosed inside the tagbody with an arbitrary number of
intervening stack frames. When this is the case, upon entry to the tagbody form, a
block/tagbody entry with a fresh identi�er is established. When a go is executed,
the point to which control is to be transferred is known statically. The identi�er is
also stored in a lexical variable in the static environment of closures established inside
the tagbody form that may execute a corresponding go form. When the tagbody

form is exited normally, the block/tagbody entry is popped o� the stack and o� the
dynamic environment.

go accesses the identi�er from the static environment and then searches the dynamic
environment for a corresponding identi�er in a block/tagbody entry. If one with the
right identi�er is found, the lexical environment is restored, and control is transferred
to the statically known address.

27.5 Transfer of control to an exit point

Whenever transfer of control to an exit point is initiated, the exit point is �rst searched
for. If no valid exit point can be found, an error is signaled. If a valid exit point is
found, the stack must then be unwound. First, the dynamic environment is traversed
for any intervening exit points, and they are marked as invalid as indicated above.
Traversal stops when the stack frame of the valid exit point is reached. Unwinding now
begins. The dynamic environment is traversed again and thunks in unwind-protect

entries are executed. The traversal again stops when the stack frame of the valid exit
point is reached.

182 CHAPTER 27. X86-64

27.6 Address space layout

The architecture speci�cation guarantees that the available address space is at least
248 bytes, with half of it at the low end of the full potential 264 byte address space,
and the other half at the high end of the full potential address space. The upper
half is typically reserved for the operating system, so for applications only the low 247

bytes are available. We divide this address space as follows:

• The space reserved for dyads in the global heap (see Appendix C) starts at
address 0 and ends at 245. Only a small part of it is initially allocated, of
course and it grows as needed.

• The space reserved for racks in the global heap (see Appendix C) starts at
address 245 and ends at 246. Only a small part of it is initially allocated, of
course and it grows as needed.

• Each thread is given an address space of 230 bytes with the low part (a few
megabytes) reserved for the nursery and the rest reserved for the stack. Only
a small part of the stack is initially allocated, and it grows as needed. The
address spaces for threads start at address 246.

This layout is illustrated in Figure 27.3.

0 2 22
45 46 64

Global heap

dyads racks

Threads

Figure 27.3: Address space layout for the x86-64 backend.

27.7 Parsing keyword arguments

When the callee accepts keyword arguments, it is convenient to have all the arguments
in a properly-ordered sequence somewhere in memory. We obtain this sequence by
pushing the register arguments to the stack in reverse order, so that the �rst argument
is at the top of the stack. When more than 5 arguments are passed, the program
counter is popped o� the top of the stack, thereby moving it to its �nal destination
before the register arguments are pushed.

Chapter 28

HIR interpreter

This backend is characterized by the fact that source code is compiled to the high-level
intermediate representation (HIR). The HIR code is then interpreted by a Common
Lisp program. Recall that the high-level intermediate code only manipulates Common
Lisp objects so that all address calculations are implicit.

At the center of this backend is a SICL �rst-class global environment represented as
a host class instance. This environment contains mappings from names to all objects
that are part of any global environment, such as functions, macros, variables, classes,
packages, types, setf expanders, etc.

183

184 CHAPTER 28. HIR INTERPRETER

Part IV

Contributing to SICL

185

Chapter 29

General Common Lisp style

guide

29.1 Purpose of style restrictions

The purpose of imposing a particular style is based on a few simple facts that hold
true for both natural languages and programming languages:

• The set of all idiomatic phrases is a tiny subset of the set of all grammatical
phrases.

• The main purpose of these phrases is to serve as communication between people.

To illustrate the �rst fact, consider a natural language such as English. In English, we
say �tooth brush�, but �dental �oss�. The words �dental brush� and �tooth �oss� would
be perfectly grammatical, but they are not used. A person trying to communicate with
other people must use the words that have been widely agreed upon, even though some
other words are perfectly legitimate. It might seem that such idiosyncrasies would be
limited to languages with multiple heritage such as English, but that is not the case.
In French, we say �brosse à dents�, �pâte dentifrice�, and ��l dentaire�. There is a large
number of reasonable combinations, but only one is used.

The same thing is true for programming languages. The community has collectively
decided on a particular subset of all the grammatical phrases, and a programmer who
wishes to communicate with other programmers should stick to that subset.

187

188 CHAPTER 29. GENERAL COMMON LISP STYLE GUIDE

It should also be emphasized that the choice of idioms is di�erent in di�erent lan-
guages. An example from natural languages would be that in English we say �I wash
my hands�, in French �I wash myself the hands�, and in Swedish we say �I wash the
hands [on myself]�. Just as it would be pointless trying to use an idiom from one
language in a translated version in a di�erent language, it is as pointless to translate
idioms from one programming language to a di�erent programming language.

Finally, the choice of what phrases are idioms and what phrases are not, is almost
totally arbitrary, and based on coincidences of history. Therefore it is rarely productive
to ask oneself why a particular phrase is an idiom and a di�erent one is not. There is
no possible enlightening answer to such a question.

29.2 Width of a line of code

Horizontal space is a precious resource that should not be wasted. The width of a
line should preferably not exceed 80 characters. This limit used to be hard, because
some printers or printer drivers would truncate longer lines. Since it is less common
to print code these days, the limit is now soft. The purpose of keeping lines somewhat
short is so that it is possible on a reasonable monitor to display two documents side by
side. One document is typically a Common Lisp source �le, and the other document
is typically the bu�er containing interactions with the Common Lisp system.

The systematic use of long lines makes the practice of displaying two documents side
by side impossible, or at least impractical. If a single monitor is used, the programmer
then has to �ip back and forth between the source code and the interaction loop. When
two monitors are used, the e�ect is to waste half a monitor that could otherwise be
used for displaying documentation or something else.

29.3 Commenting

Use a single semicolon to introduce a comment that follows the code on a line. Use
two semicolons for comments that are not at the top level in a �le and that should
be aligned with the code that it comments on. Use three semicolons for top-level
comments that concern some top-level forms in a �le, but not the entire �le. Use four
semicolons for comments that concern the entire �le.

29.4. BLANK LINES 189

29.4 Blank lines

A single blank line is common in the following situations:

• Between two top-level forms.

• Between a �le-speci�c comment and the following top-level form.

• Between a comment for several top-level forms and the �rst of those top-level
forms.

A single blank line may occur inside a top-level form to indicate the separation of two
blocks of code concerned with di�erent subjects, but it would be more common to put
those two blocks of code in separate functions.

There should never be any instance of two consecutive blank lines, and the last line
of the �le should not be blank.

29.5 car, cdr, first, etc are for cons cells

The Common Lisp standard speci�es that the function car, cdr, first, second,
rest, etc return nil when nil is passed as an argument. This fact should mostly be
considered as a historical artifact and should not be systematically exploited. Take
for instance the following code:

(if (first x) ...)

To the compiler, it means �execute the false branch of the if when either x is nil, or
when x is a list whose �rst element is nil�.

To the person reading the code, it means something di�erent altogether, namely �x
holds a non-empty list of Boolean values, and the false branch of the if should be
executed when the �rst element of that list is false. See also Section 29.6.

29.6 Di�erent meanings of nil

Consider the following local variable bindings:

190 CHAPTER 29. GENERAL COMMON LISP STYLE GUIDE

(let ((x '())

(y nil)

z)

...)

To the compiler, the three are equivalent. To a person reading the code, they mean
di�erent things, however:

• The initialization of x means that x holds a list that is initially empty.

• The initialization of y means that y holds a Boolean value or a default value
that may or may not change in the body of the let form.

• The absence of initialization of z means that no initial value is given to z. In
the body of the let form, the variable z will be assigned to before it is used.

The following body of the let form corresponds to the expectations of the person
reading the code:

(let ((x '())

(y nil)

z)

...

(push (f y) x)

...

(unless y (setf y (g x)))

...

(setf z (h x))

...)

The following body of the let form violates the expectations of the person reading
the code:

(let ((x '())

(y nil)

z)

...

(push (f y) z) ; z is used before it is assigned.

...

(unless x ; x is treated as a Boolean.

29.7. TESTS IN CONDITIONAL EXPRESSIONS 191

(setf y (g x)))

...

(push (f x) y) ; y is treated as a list.

...)

29.7 Tests in conditional expressions

The test of a conditional expression should be a (possibly generalized) Boolean expres-
sion. The following expressions correspond to the expectations of the person reading
the code:

(if visited-p ...)

(when (member ...) ...)

(cond ((plusp x) ...) ...)

The following code violates the expectation:

(let ((item (find ...)))

(when item ...))

because item is not a (generalized) Boolean value. It is an item returned by find,
though there is an out of band value (nil) indicating that no item was found by find.
In this case, the corresponding code that corresponds to the expectations would look
like this:

(let ((item (find ...)))

(unless (null item) ...))

29.8 General structure of recursive functions

When possible, a recursive function should be structured like a mathematical proof
by induction. By that we mean that the special case should be handled �rst so as to
reassure the person reading the code that this case can be handled correctly by the
function.

So for instance, assume we want to write a function that counts the number of atoms
in a tree, we should not write it like this:

192 CHAPTER 29. GENERAL COMMON LISP STYLE GUIDE

(defun count-atoms (tree)

(if (consp tree)

(+ (count-atoms (car tree))

(count-atoms (cdr tree)))

1))

but rather

(defun count-atoms (tree)

(if (atom tree)

1

(+ (count-atoms (car tree))

(count-atoms (cdr tree)))))

Even when the base case does not return anything useful, it should be handled �rst.
The following code violates the expectations:

(defun map-conses (function tree)

(unless (atom node)

(funcall function node)

(traverse (car node))

(traverse (cdr node))))

and should be written like this instead:

(defun map-conses (function tree)

(if (atom node)

nil ; nothing to do

(progn (funcall function node)

(traverse (car node))

(traverse (cdr node)))))

though, admittedly, this example is a little too simple to illustrate the importance of
this rule.

29.9 Using car and cdr vs. using first and rest

While the two functions car and first have the exact same de�nitions, as do cdr

and rest, they send very di�erent messages to the person reading the code.

29.9. USING CAR AND CDR VS. USING FIRST AND REST 193

The functions car, cdr, etc., should be avoided when the argument is to be considered
as a list, and should be reserved for other uses of cons cells such as for trees or pairs
of values.

It follows that the two families of functions should never be mixed for the same
argument.

194 CHAPTER 29. GENERAL COMMON LISP STYLE GUIDE

Chapter 30

SICL-speci�c style guide

30.1 Commenting

In most programs, comments introduce unnecessary redundancies that can then easily
get out of sync with the code. This is less risky for an implementation of a speci�cation
that is not likely to change. Furthermore, we would like SICL to be not only a high-
quality implementation, but we would like for its code to be very readable. For that
reason, we think it is preferable to write SICL in a �literate programming� style, with
signi�cant comments explaining the code.

Accordingly, we prefer comments to consist of complete sentences, starting with a
capital letter, and ending with punctuation.

30.2 Designators for symbol names

Always use uninterned symbols (such as #:hello) whenever a string designator for a
symbol name is called for. In particular, this is useful in defpackage and in-package

forms.

Using the upper-case equivalent string makes the code break whenever the reader is
case-sensitive (and it looks strange that the designator has a di�erent case from the
way symbol that it designates is then used), and using keywords unnecessarily clutters
the keyword package.

195

196 CHAPTER 30. SICL-SPECIFIC STYLE GUIDE

30.3 Docstrings

We believe that it is a bad idea for an implementation of a Lisp system to have
docstrings in the same place as the de�nition of the language item that is documented,
for several reasons. First, to the person reading the code, the docstring is most often
noise, because it is known from the standard what the language item is about. Second,
it often looks ugly with multiple lines starting in column 1 of the source �le, and this
fact often discourages the programmer from providing good docstring. Third, it makes
internationalization harder.

For this reason, we will provide language-speci�c �les containing all docstrings of
Common Lisp in the form of calls to (setf documentation).

We also recommend using format (at read time) so that the format directive �@ can
be used at the end of lines, allowing the following line to be indented as the rest of
the text. That way, we avoid the ugliness of having subsequent lines start in column
1.

30.4 Naming and use of slots

In order to make the code as safe as possible, we typically do not want to export
the name of a slot, whereas frequently, the reader or the accessor of that slot should
be exported. This restriction implies that a slot and its corresponding reader or
accessor cannot have the same name. Several solutions exist to this problem. The
one we are using for SICL is to have slot names start with the percent character (`%').
Traditionally, a percent character has been used to indicate some kind of danger, i.e.
that the programmer should be very careful before directly using such a name. Client
code that attempts to use such a slot would have to write package::%name which
contains two indicators of danger, namely the double colon package marker and the
percent character.

Code should refer to slot names directly as little as possible. Even code that is private
to a package should use an internal protocol in the form of readers and writers, and
such protocols should be documented and exported whenever reasonable.

30.5 Standard functions

Standard functions should always check the validity of their arguments and of any
other aspect of the environment. If such a function fails to accomplish its task, it

30.6. STANDARD MACROS 197

should signal an appropriate condition.

We would like error messages to be phrased in terms of the code that was directly
invoked by user code, as opposed to in terms of code that was indirectly invoked by
system code. As an example, consider a sequence function such as substitute. If
it is detected that a dotted list has been passed to this function, it should not be
reported by endp or any other system function that was not directly called by user
code, but instead it should be reported by substitute in terms of the sequence that
was originally passed as an argument. On the other hand, if substitute invokes a
user-supplied test that fails, we would like the error message to be reported in terms
of that user-supplied code rather than by substitute. This is how we are currently
imagining solving this problem:

• Standard functions do not call any other standard functions directly, other
than if it is known that no error will be signaled. When a call from a standard
function f to a standard function g might result in an error being signaled by
g, that call is replaced by a call to a special version of the standard function,
say h that signals a more speci�c condition than is dictated by the Common
Lisp HyperSpec.

• If acceptable in terms of performance, a standard function such as f that calls
other functions that may signal an error, handles such errors by signaling an
error that is directly related to f .

• Error reporting is done in terms of the name and arguments to f .

30.6 Standard macros

Standard macros must do extensive syntax analysis on their input so as to avoid
compilation errors that are phrased in terms of expanded code.

As with standard functions, standard macros that expand into other system code
that may signal an error should not use other standard functions or other standard
macros directly, but instead special versions that signal more speci�c conditions. The
expanded code should then contain a handler for such errors, which signals an error
in terms of the name and the arguments of the macro.

30.7 Compiler macros

SICL will make extensive use of compiler macros. Compiler macros are part of the

198 CHAPTER 30. SICL-SPECIFIC STYLE GUIDE

standard, so this mechanism must be part of a conforming compiler anyway. In
many cases, instead of encoding special knowledge in the compiler itself, we can use
compiler macros. By doing it this way, we simplify the compiler, and we provide a set
of completely portable macros that any implementation can use.

Compiler macros should be used whenever the exact shape of the call site might be
used to improve performance of the callee. For instance, when the callee uses keyword
arguments, we can eliminate the overhead of keyword-value parsing at runtime and
instead call a special version of the callee that does not have to do any such parsing.1

Similarly, functions that take a &rest argument can provide special cases for di�erent
common sizes of the &rest argument.

We propose using compiler macros at least for the following situations:

• to convert calls to list and list* into nested calls to cons;

• to convert simple calls to some built-in functions that accept :test and :key

keyword arguments (such as find, member, etc) into calls to special versions of
these procedures with particularly simple functions for these keyword arguments
(identity, car, eq, etc);

• to convert calls to some functions that accept optional arguments such as last
and butlast into calls to special versions when the optional argument is not
given.

Compiler macros should not be used in the place of inlining.

30.8 Conditions and restarts

SICL functions should signal conditions whenever this is required by the Lisp standard
(of course) and whenever it is allowed by the Lisp standard and reasonably e�cient
to do so. If the standard allows for subclasses of indicated signals (I think this is the
case), then SICL should generate as speci�c a condition as possible, and the conditions
should contain all available information as possible in order reduce the required e�ort
to �nd out where the problem is located.

SICL function should also provide restarts whenever this is practical.

1FIXME: There is a suggestion that this creation could be automated by the compiler. I
don't know how doable that would be.

30.9. CONDITION REPORTING 199

30.9 Condition reporting

Condition reporting should be separate from the de�nition of the condition itself.
Separating the two will make it easier to customize condition reporting for di�erent
languages and for di�erent systems. An integrated development environment might
provide di�erent condition reporters from the normal ones, that in addition to report-
ing a condition, displays the source-code location of the problem.

Every SICL module will supply a set of default condition reporters for all the speci�c
conditions de�ned in that module. Those condition reporters will use plain English
text.

30.10 Internationalization

We would like for SICL to have the ability to report messages in the local language
if desired. The way we would like to do that is to have it report conditions according
to a language object. To accomplish this, condition reporting trampolines to an
implementation-speci�c function sicl:report-condition which takes the condition,
a stream, and a language as arguments.

The value of the special variable sicl:*language* is passed by the condition-reporting
function to sicl:report-condition.

In other words, the default :report function for conditions is:

(lambda (condition stream)

(sicl:report-condition condition stream sicl:*language*))

Similarly, the Common Lisp function documentation should trampoline to a function
that uses the value of sicl:*language* to determine which language to use to show
the documentation.

30.11 Package structure

SICL has a main package containing and exporting all Common Lisp symbols. It
contains no other symbols. A number of implementation packages import the symbols
from this package, and might de�ne internal symbols as well. Implementation packages
may export symbols to be used by other implementation packages.

200 CHAPTER 30. SICL-SPECIFIC STYLE GUIDE

This package structure allows us to isolate implementation-dependent symbols in dif-
ferent packages.

30.12 Assertions

30.13 Threading and thread safety

Consider the use of locks to be free. We predict that a technique call �speculative lock
elision� will soon be available in all main processors.

Chapter 31

List of tasks of limited size

In this chapter, we give a list of tasks that can be accomplished in a shorter period of
time, typically between a few days and a few weeks. The tasks in this list are meant
for people who would like to contribute to SICL, but who either lack a signi�cant
amount of time, or the knowledge, to intervene in more complex tasks.

Each task in this list is meant to be interesting to the person who decides to take it on.
Thus, we have avoided trivial tasks such as untabifying source code, �xing grammar
in comments, and generally altering code to conform to the guidelines in the previous
two chapters.

31.1 Implement hash tables

Hash tables have not yet been implemented in SICL. We would like to investigate
several possible implementations, and perhaps propose several such implementations,
with di�erent characteristics, in the code base of SICL.

Since SICL has a very e�cient technique for generic dispatch, we think that there
could be a hierarchy of classes with di�erent characteristics, all implementing the
standard protocol for hash tables speci�ed by the Common Lisp standard.

In general, we want hash tables to be thread safe. If it is possible to make them lock
free, that is even better.

The code should be structured so that it looks �natural� in intrinsic setting, i.e. when
the code is loaded into SICL. However, we would like for the code to be structured

201

202 CHAPTER 31. LIST OF TASKS OF LIMITED SIZE

such that it can be tested in an extrinsic setting as well.

The code should contain a separate test system, probably using extensive testing
through the use of randomly generated operations.

31.1.1 Implementation using a list

We would like a simple implementation where elements of the table are kept in an
ordinary list. Such an implementation avoids the entire question of hashing functions.
As such, it is particularly well suited to serve during bootstrapping

31.1.2 Implementation using open hashing

31.1.3 Implementation using vector buckets

31.2 Implement streams

Streams have non yet been implemented in SICL. The full set of streams de�ned by
the standard must be implemented at some point.

Initially, we are not concerned with extreme performance requirements. For that
reason, we think that the protocol functions can be implemented on top of the Gray-
streams protocol.

The code should be structured so that it looks �natural� in intrinsic setting, i.e. when
the code is loaded into SICL. However, we would like for the code to be structured
such that it can be tested in an extrinsic setting as well.

31.3 Better error messages for the loop module

The parser for the loopmacro uses a home-grown version of combinator parsing. Since
loop clauses do not need backtracking, this feature of normal combinator parsing is
not included.

However, we think that combinator parsing is perhaps not a well suited technique
when good error messages are a requirement.

This task consists of investigating whether good error messages can be obtained with

31.4. BETTER ERROR MESSAGES BY THE LAMBDA-LIST PARSER203

the current technique, while maintaining a reasonable structure of the code. Or
whether some other technique might be better suited. We are thinking that Ear-
ley parsong might be a good candidate.

31.4 Better error messages by the lambda-list parser

The parser for the loop macro uses a home-grown implementation of the Earley pars-
ing technique. In theory, this technique should be excellent when it comes to generat-
ing good error messages in case of parse failures. However, we have not implemented
such error messages yet.

This task consists of adding such error messages.

204 CHAPTER 31. LIST OF TASKS OF LIMITED SIZE

Part V

Appendices

205

Appendix A

All standard macros

and assert call-method case ccase check-type cond ctypecase declaim decf

defclass defconstant defgeneric define-compiler-macro define-condition define-method-combination

define-modify-macro define-setf-expander define-symbol-macro defmacro defmethod

defpackage defparameter defsetf defstruct deftype defun defvar destructuring-bind

do do* do-all-symbols do-external-symbols do-symbols dolist dotimes ecase

etypecase formatter handler-bind handler-case ignore-errors in-package incf

lambda loop loop-finish multiple-value-bind multiple-value-list multiple-value-setq

nth-value or pop pprint-exit-if-list-exhausted pprint-logical-block pprint-pop

print-unreadable-object prog prog* prog1 prog2 psetf psetq push pushnew

remf restart-bind restart-case return rotatef setf shiftf step time trace

typecase unless untrace when with-accessors with-compilation-unit with-condition-restarts

with-hash-table-iterator with-input-from-string with-open-file with-open-stream

with-output-to-string with-package-iterator with-simple-restart with-slots

with-standard-io-syntax

207

208 APPENDIX A. ALL STANDARD MACROS

Appendix B

Removed systems

This appendix contains a list of systems that were removed for one of several reasons:

• The code used to work, but is no longer working due to updates in code that it
depends on. More work is needed for it to be usable again.

• The code never worked, and it needs more work in order for it to be considered
part of SICL.

• The code never worked, and we have no ambition to make it work, but it
nevertheless contains interesting ideas that we might revive in the future.

B.1 Stack-oriented C backend

Removed 2016-08-09.

SHA1 ID: b983763485ac5efb6fe3319f015b414b3e7ea5f5

B.2 Concrete Common Lisp backend

Removed 2016-08-09.

SHA1 ID: 3e0ca56b20ab49b27ae16bbe2046b975ac27be3e

209

210 APPENDIX B. REMOVED SYSTEMS

B.3 Extrinsic HIR interpreter backend

Removed 2016-08-09.

SHA1 ID: 5a902f694be00857b33e7d79f0ddfa237a6dab7d

B.4 Abstract machine backend

Removed 2016-08-09.

SHA1 ID: b905eba4da8daf89c450b6ab31748242b80e288e

B.5 X86 assembler

Removed 2016-08-10

SHA1 ID: 74172920471bade46e86212a41ebf487e36e36f6

B.6 Global system de�nition and associated package

�le

Removed 2016-08-12

SHA1 ID: 8016f987986a85a6276�f5f1e54b7b6bafcd428

B.7 File containing de�nitions of tag bits

Removed 2016-08-12

SHA1 ID: 94860f0654ecc40331d3db1ee6f8f9fc881f7307

Appendix C

Memory allocator

C.1 Memory is divided into chunks

Available memory is divided into consecutive chunks with no space in between two
chunks. If there are two consecutive chunks C1 and C2 somewhere in available mem-
ory, then C1 is said to be the preceding chunk with respect to C2 and C2 is said to
be the following chunk with respect to C1.

A chunk can either be in use or free. When a chunk is freed, and either the preceding
chunk is free, the following chunk is free, or both the preceding and the following
chunks are free, then the free chunks are coalesced into a single free chunk. As a
consequence, there are never two consecutive free chunks in memory.

Every chunk C has an initial 64-bit word containing the size of the chunk in 8-bit
bytes. Since this value is always a multiple of 41, the last two bits are always 0. We
use the next to last bit to indicate whether C is in use or free. If the bit is 1, the
chunk C is in use. If the bit is 0, the chunk C is free. We use the last bit to indicate
whether the preceding chunk with respect to C is in use or free. If the bit is 1, the
preceding chunk is in use. If the bit is 0, the preceding chunk is free. If there is no
preceding chunk, i.e. C is the �rst chunk in memory, then the last bit of the �rst
word is set to 1 to avoid any attempt to coalesce C with some non-existing preceding
chunk. Notice that for all chunks except the last one, there are therefore two bits in
memory indicating whether the chunk is in use or free; one bit in the �rst word of the

1FIXME: There is a question concerning whether it would be better to align user data on
cache lines.

211

212 APPENDIX C. MEMORY ALLOCATOR

chunk itself, and one bit in the following chunk.

To obtain the size of the chunk in bytes, the last two bits of the word must �rst be
masked out, using the and operation with a mask containing a 1 in every position
except the two least signi�cant ones.2

A free chunk is linked into a doubly linked list of chunks in the same bin. See Sec-
tion C.2 for more details about the available bins. If there are two consecutive chunks
C1 and C2 in the linked list in a bin, then C1 is said to be the previous chunk with
respect to C2 and C2 is said to be the next chunk with respect to C1.

The second 64-bit word of a free chunk is a pointer to the previous chunk in the bin.
The third 64-bit word of a free chunk is a pointer to the next chunk in the bin. These
words do not point to the beginning of the previous or the next chunk. Instead, the
second word contains the address of the third word of the previous chunk in the bin,
and the third word contains the address of the second word of the next chunk in the
bin. If there is no previous chunk in the bin, then the second word contains the address
of a sentinel that is the beginning of the bin. Similarly, if there is no next chunk in
the bin, then the third word contains the address of a sentinel that is the end of the
bin. By using these sentinels, we are able to simplify the algorithms for linking and
unlinking a chunk. The last word of a free chunk contains the size of the chunk, just
like the �rst word. The last word of a chunk in use is reserved for user data.

Since a free chunk has at least four words in it, this is also the minimum size allowed
for any chunk.

Figure C.1 shows the constellation of two chunks where the �rst chunk is in use and
the second chunk is free.

As Figure C.1 shows, the next-to-last bit of the �rst word of the �rst chunk and the
last bit of the �rst word of the second chunk are both 1, indicating that the �rst chunk
is in use. The next-to-last bit of the �rst word of the second chunk is 0 indicating that
the second chunk is free. The �rst chunk contains the size word followed by user data.
The second chunk contains the size in the �rst and the last word, and the second and
third words of the second chunk contain links to the previous and the next chunk in
the bin.

Figure C.2 shows the constellation of two chunks where the �rst chunk is free and the
second chunk is in use.

As Figure C.2 shows, the next-to-last bit of the �rst word of the �rst chunk and the

2FIXME: There is a suggestion to store the size multiplied by 4 so that it can be obtained
by shifting right by two bits. This suggestion would avoid having a 64-bit mask. It is quite
unlikely that storing sizes this way would not be enough, at least for the foreseeable future.

C.1. MEMORY IS DIVIDED INTO CHUNKS 213

chunk
in
use

free
chunk

size

size

size

pointer to prvious chunk in bin

pointer to next chunk in bin

user data

1

1

0

Figure C.1: Chunk in use followed by free chunk.

free
chunk

size

size

pointer to prvious chunk in bin

pointer to next chunk in bin

chunk
in
use

size

user data

0

0

1

Figure C.2: Free chunk followed by chunk in use.

214 APPENDIX C. MEMORY ALLOCATOR

last bit of the �rst word of the second chunk are both 0, indicating that the �rst chunk
is free. The next-to-last bit of the �rst word of the second chunk is 1 indicating that
the second chunk is in use. The �rst chunk contains the size in the �rst and the last
word, and the second and third words of the �rst chunk contain links to the previous
and the next chunk in the bin. The second chunk contains the size word followed by
user data.

Figure C.3 shows the constellation of two chunks where both chunks are in use.

size

size

user data

chunk

in

use

chunk

in

use
user data

11

1

Figure C.3: Two chunks in use.

As Figure C.3 shows, the next-to-last bit of the �rst word of the �rst chunk and the
last bit of the �rst word of the second chunk are both 1, indicating that the �rst chunk
is in use. The next-to-last bit of the �rst word of the second chunk is also 1 indicating
that the second chunk is in use as well. Each of the chunks contains the size in the
�rst word and the remaining words of the chunk contains user data.

C.2 Bins of chunks of similar size

As indicated in Section C.1, we maintain a number of bins containing chunks of similar
size. There are 512 bins in total, numbered from 0 to 511. Each of the bins from 0 to
63 contains chunks of a single size. Bin 0 contains chunks with 4 words (the minimum
size) and bin 63 contains chunks with 67 words. Bins starting at 64 contain chunks
with a size greater than the maximum size of chunks in the previous bin and less than

C.3. LINKING A CHUNK INTO A BIN 215

or equal to some maximum size that is indicated explicitly. The maximum size of
chunks in bins 64 to 511 grows by roughly less than 10% compared to the previous
one. Thus the maximum size of chunks in bin 64 is 73, that of chunks in bin 65 is 79,
etc. The maximum chunk size of bin 511 is 261 words, or 264 bytes. In bins 0 to 63,
chunks are sorted by address. In bins 64 to 511 chunks are sorted �rst by size and
then (if several chunks have the same size) by address.3

Three vectors of 512 elements each are used to manage the bins. One vector contains
the maximum size4 of chunks in the bin that corresponds to the index. The second
vector contains the �rst sentinel of each bin. The third vector contains the last sentinel
of each bin. When the bin is empty, the element in the second vector contains the
address of the element in the third vector and vice versa. In addition to these three
vectors, we also maintain a bitmap5 consisting of 8 64-bit words, containing a 1 if the
corresponding bin has at least one chunk in it and 0 if the corresponding bin contains
no chunks. Figure C.4 illustrates the organization of the bins.

In the example in Figure C.4, bin 0 contains two chunks, bin 63 a single chunk, and
bin 66 contains three chunks. Bins 64, 65, and 511 contain no chunks.

C.3 Linking a chunk into a bin

To link an arbitrary chunk of n words into a bin, we �rst determine which bin it should
be linked into. If n ≤ 67 then the chunk goes into bin n − 4. If not, we do a binary
search to �nd the bin with the smallest maximum chunk size that is greater than or
equal to n. We then do a linear search of the chunks in the bin, ending either when
we �nd the last sentinel, or when we �nd the �rst chunk that should be located after
the one to be inserted. Finally, the chunk to be inserted is linked in using the normal
insertion procedure for doubly linked lists.

3FIXME: There is a question concerning whether odd-sized chunks are needed. I think
the answer is that they are not strictly needed, but that more space would be wasted without
them.

4In the implementation, the sizes in this vector are given in number of 8-bit bytes, rather
than in number of 64-bit words, so as to avoid unnecessary arithmetic operations in the
allocator algorithms.

5This bitmap is not yet implemented.

216 APPENDIX C. MEMORY ALLOCATOR

0 63 64 65 66

4 67 73 79 86

511

2
61

1 1 0 0 1 0

Figure C.4: Organization of bins.

C.4 Allocating a chunk

To allocate a chunk with at least n words in it, we �rst determine the bin b with the
smallest possible maximum chunk size that is greater than or equal to n. If n ≤ 67
then the b is computed as n− 4. If not, we do a binary search to �nd b.

It is possible that b is empty. We must therefore �nd the smallest bin b′ such that
b′ ≥ b and b′ is not empty. We �rst compute q = b div 64 and r = bmod 64 indicating
that b corresponds to position r in bitmap q. We then compute a mask m consisting
of r leading 0s and 64− r trailing 1s. This mask is and-ed with the bitmap. We then
�nd the �rst 1 in the resulting value. If such a position exists, then we have found b′.
If not, we search bitmaps q+ 1, q+ 2 etc., without any mask, until a set bit is found.
The �rst such bit found corresponds to b′. If no such bit is found, we request more
memory from the operating system.

When a non-empty bin is found, if the bin index is less than or equal to 63 we use the
�rst chunk in the bin. If the bin index is greater than or equal to 64, we do a linear
search of the chunks in the bin, and use the �rst chunk that is greater than or equal
to n words.

Once we �nd a chunk c that is greater than or equal to n words, there are two cases:

C.5. FREEING A CHUNK 217

1. If the size of c is less than or equal to n − 4, then we unlink the chunk from
the bin and return it. The reason for the 4 is that we can not use a residue less
than 4 words.

2. If the size s of c is strictly greater than n, then we unlink c from its bin. We
then split c into a chunk c1 of size n and a chunk c2 of size s − n. The chunk
c2 is then linked into the bin that corresponds to its size. The free/used bits
are updated to re�ect the fact that c1 is now used. Finally, the chunk c1 is
returned.

C.5 Freeing a chunk

When a chunk C is freed, there are four possible situations (recall that �preceding�
and �following� refer to the order between chunks in the address space):

1. The chunk P preceding C and the chunk F following C are both in use. Then,
we just link C into an appropriate bin.

2. The chunk P preceding C is in use but the chunk F following C is free. Then we
�rst coalesce C with F , and then we link the resulting chunk into an appropriate
bin.

3. The chunk P preceding C is free but the chunk F following C is in use. Then
we �rst coalesce C with the P , and then we link the resulting chunk into an
appropriate bin.

4. The chunk P preceding C and the chunk F following C are both free. Then we
�rst coalesce C both with P and F , and then we link the resulting chunk into
an appropriate bin.

To determine whether the chunk P preceding C is in use or free, we consult the last
bit of the �rst word C. If it is 1, then P is in use. If it is 0, P is free. Only when
this bit is 0 is it possible to �nd the beginning of P , because only then does the last
word of P contain the size of P . And that size is needed to �nd the beginning of P .
This is the main reason for storing the in-use bit in the chunk following the one that
is concerned.

To determine whether the chunk F following C is in use or free, use the size of C to
�nd the beginning of F . We then consult the next-to-last bit of the �rst word of F .
If it is 1, then F is in use. If it is 0, then F is free.

To coalesce the chunk P preceding C (case 2 above) with C, P must �rst be unlinked
from its bin. Then the size contained in the �rst word of P is modi�ed to contain the

218 APPENDIX C. MEMORY ALLOCATOR

sum of the initial sizes of P and C. This new size is then stored in the last word of C
as well. Finally, the resulting chunk is linked into the bin corresponding to the new
size.

To coalesce the chunk C with the chunk F following C (case 3 above), F must �rst
be unlinked from its bin. Then the size contained in the �rst word of C is modi�ed to
contain the sum of the initial sizes of C and F . This new size is then stored in the last
word of F as well. Finally, the resulting chunk is linked into the bin corresponding to
the new size.

To coalesce the chunk P preceding C, C itself, and the chunk F following C (case 4
above), both P and F must �rst be unlinked from their respective bins. Then the
size contained in the �rst word of P is modi�ed to contain the sum of the three sizes.
This new size is then stored in the last word of F as well. Finally, the resulting chunk
is linked into the bin corresponding to the new size.

C.6 Concurrency

To be �lled in. Talk about what kind of synchronization is required.

Appendix D

Bootstrapping principles

In this appendix, we describe general principles of bootstrapping, as opposed to im-
plementation details.

D.1 General restrictions

We de�ne the purity of some object to be a non-negative integer. An object of purity
p is an instance of a class of purity p − 1. An object of purity 0 is a host object.
An object of purity 1 is a is a bridge object. An object of purity 2 is an impure
ersatz object. An object of purity 3 or more is a pure ersatz object. Each phase of
the bootstrapping procedure creates objects of one purity. Currently, bootstrapping
phase n creates objects of purity p = n− 2. Phase n puts generic function objects in
environment En+1 and class objects in environment En.

Suppose we want to access some part of a generic function metaobject of purity p.
Perhaps we want to add methods to it, or set its discriminating function. During
bootstrapping, such access must be done by fully functioning generic functions. For
that reason, we use functions of purity p− 1 for such access, and we can assume that
when we need to accomplish such access to a generic function of purity p, then either
the accessors of purity p− 1 are either already fully functional, or the machinery for
making them fully functional is fully functional, so that we can freely use generic
functions of purity p− 1 to access a generic function of purity p.

In general we would like for the slots of an object of purity p to contain objects of
purity p, with the exception of meta-level information.

219

220 APPENDIX D. BOOTSTRAPPING PRINCIPLES

For generic function metaobjects, this restriction implies that we want the methods
of a generic function of purity p to be objects of purity p, and we want the method
functions of those methods to be objects of purity p. Idem for the method combination,
the e�ective method functions, and the discriminating function. It follows that the
generic-function class and themethod class of a generic function of purity p are objects
of purity p− 1.

For classes, the restriction implies that the slot metaobjects, the superclasses, the
subclasses, etc. of a class of purity p should also be of purity p.

In general, we would like for a function of purity p to call other functions of purity p,
but during bootstrapping we can not always accomplish this restriction. As a general
principle, however, we want to minimize the exceptions to this rule, because these
exceptions require speci�c bootstrapping code to be handled correctly.

D.2 Object creation

An object is created by a call to make-instance. Suppose we want to create an object
of purity p. To do so, we need to instantiate a class of purity p − 1. Instantiating a
class involves calling make-instance, which is a generic function. But make-instance
must call other functions. One such function compute-defaulted-initargs which
computes the defaulted initialization arguments, given the class metaobject passed
to make-instance and the initialization arguments passed to it. The function doing
this computation must inspect the class metaobject in that it must call the accessor
class-default-initargs. This latter function must therefore have purity p − 2
since it takes an argument of purity p− 1. If we assume that make-instance and the
function for computing the defaulted initialization arguments have the same purity,
then make-instance has purity p − 2 as well. Now, values of keyword arguments
passed to make-instance may be objects that will become part of the object being
created, in which case, those values should have the same purity as that object, namely
p.

Once the defaulted initialization arguments are computed, their validity must be
checked. This task is accomplished by the function check-initargs-valid.

Once initialization arguments have been validated, make-instance calls allocate-instance
in order to create the instance of the class.

Finally, the new instance must be passed to initialize-instance for initialization.

Object creation is illustrated in Figure D.1. As we can see, make-instance must call
functions of two di�erent purity values. For that reason, make-instance must be

D.3. CHECKING THE VALIDITY OF INITARGS TO MAKE-INSTANCE 221

handled specially during bootstrapping.

Another interesting aspect of make-instance is that, if it is given a symbol as opposed
to a class metaobject, it must call find-class. Now find-class is probably an
ordinary function, and it must �nd a class metaobject of purity p − 1. If we assume
that find-class has the same purity as make-instance, then we have a function
of purity p − 2 that must �nd a class metaobject of purity p − 1. This information
may determine in which environment we decide to allocate functions and classes of
di�erent purity.

D.3 Checking the validity of initargs to make-instance

Once the defaulted initialization arguments are computed, their validity must be
checked. This task is accomplished by the function check-initargs-valid. This
function call accessors on the class metaobject. In addition, it must inspect methods
on allocate-instance, make-instance, initialize-instance, and shared-initialize.
These functions do not all have the same purity. For that reason, we do not check the
validity of initargs during bootstrapping.

D.4 Object initialization

Once an instance has been created, initialize-instance is called, and initialize-instance
immediately calls shared-initialize. During bootstrapping, both these functions
are generic functions. For that reason, when used to initialize an object of purity p,
They must be de�ned in environment Ep+2.

D.5 Processing the defclass macro

The expansion of the defclassmacro results in a call to ensure-class which is an or-
dinary function that immediately calls the generic function ensure-class-using-class.
The class argument to ensure-class-using-class is either nil if the class does not
exist, or the class metaobject to be reinitialized. Thus, if the new or the existing class is
an object of purity p, then ensure-class and ensure-class-using-class should be
of purity p− 1. The AMOP states that the direct-superclasses argument to defclass

becomes the value of the :direct-superclasses argument to ensure-class so there
is no call to find-class involved here.

222 APPENDIX D. BOOTSTRAPPING PRINCIPLES

make−instance
compute−defaulted−initargs

check−intargs−valid

allocate−instance

initialize−instance

class initargs

defaulted
initargs

p−2

p−1

p

n.a.

Figure D.1: Object allocation.

D.6. INITIALIZATION OF CLASS METAOBJECTS 223

The most interesting aspect of the defclass macro is the conversion of a slot spec-
i�cation to a canonicalized slot speci�cation, and speci�cally the conversion of the
:initform option to the value of the :initfunction option. This conversion is done
by compile that takes the initform wrapped in a lambda expression and turns it into
a function. So compile in this case, must build a function of purity p since it is going
to become part of a slot-de�nition metaobject of that purity.

The :metaclass option to the defclass macro becomes the value of the :metaclass
keyword argument to ensure-class, so no conversion is involved.

The keyword argument :direct-superclasses passed to ensure-class-using-class
may contain class names or class metaobjects. If it contains a class name, it is con-
verted to a class metaobject. It must do so by calling find-class or something
similar. So preferably, find-class has purity p − 1 as well, and it must �nd a class
with purity p. This behavior is consistent with the find-class we encountered in
Section D.2.

The keyword argument :metaclass passed to ensure-class-using-class may con-
tain a class name or a class metaobject. If it contains a class name, it is converted
to a class metaobject. It must do so by calling find-class or something similar. In
this case, find-class must �nd a class with purity p − 1 which is in direct con�ict
with what it must do for the :direct-superclasses option. We solve this problem
in SICL by using an indirection called find-metaclass that does what is needed.

D.6 Initialization of class metaobjects

In SICL, class initialization is accomplished by an :aroundmethod on shared-initialize.
It calls an ordinary function to accomplish its task. If the class metaobject to be ini-
tialized has purity p, then shared-initialize has purity p− 1.

The :direct-slots argument is a list of canonicalized slot speci�cations. Each ele-
ment is converted to a direct slot de�nition metaobject. This conversion is done in two
steps. First the generic function direct-slot-definition-class is called, passing
the class metaobject as an argument. Therefore direct-slot-definition-class is a
generic function of purity p−1, just like shared-initialize. Second, make-instance
is called with the class returned by direct-slot-definition-class, and the canon-
icalized slot speci�cation. So, here make-instance is called on a class of purity p.
Therefore make-instance is of purity p− 1.

224 APPENDIX D. BOOTSTRAPPING PRINCIPLES

D.7 Accessing slots

class object slot

slot−boundp−user−class
access

compare

slot−definition−location

Figure D.2: slot-boundp-using-class.

Bibliography

[Ada18] Ulf Adams. Ry	u: Fast �oat-to-string conversion. SIGPLAN Not., 53(4):270�
282, June 2018.

[BD96] Robert G. Burger and R. Kent Dybvig. Printing �oating-point numbers
quickly and accurately. In Proceedings of the ACM SIGPLAN 1996 confer-
ence on Programming language design and implementation, PLDI '96, pages
108�116, New York, NY, USA, 1996. ACM.

[DS17] Irène Durand and Robert Strandh. Fast, Maintainable, and Portable Se-
quence Functions. In Proceedings of the 10th European Lisp Symposium,
ELS '17, pages 64 � 71, April 2017.

[HL88] Bing-Chao Huang and Michael A. Langston. Practical in-place merging.
Commun. ACM, 31(3):348�352, March 1988.

[HL90] Bing Huang and Michael A. Langston. Fast Stable Merging and Sorting in
Constant Extra Space. Technical report, Knoxville, TN, USA, 1990.

[JHM11] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collec-
tion Handbook: The Art of Automatic Memory Management. Chapman
& Hall/CRC, 1st edition, 2011.

[KPT96] Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola. Practical in-place
mergesort. Nordic J. of Computing, 3(1):27�40, March 1996.

[KR91] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, USA, 1991.

[Muc97] Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[Ste90] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.). Digital Press,
Newton, MA, USA, 1990.

225

226 BIBLIOGRAPHY

[Str14a] Robert Strandh. Fast Generic Dispatch for Common Lisp. In Proceedings of
ILC 2014 on 8th International Lisp Conference, ILC '14, pages 89:89�89:96,
New York, NY, USA, 2014. ACM.

[Str14b] Robert Strandh. Resolving Metastability Issues During Bootstrapping. In
Proceedings of ILC 2014 on 8th International Lisp Conference, ILC '14,
pages 103:103�103:106, New York, NY, USA, 2014. ACM.

[Wat89] Richard C. Waters. XP: A Common Lisp Pretty Printing System. In A.I.
Memo 1102a, MIT Arti�cial Intelligence Laboratory, 1989.

[Wat92] Richard C. Waters. Using the new Common Lisp pretty printer. SIGPLAN
Lisp Pointers, V(2):27�34, April 1992.

[Wil92] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Proceedings
of the International Workshop on Memory Management, IWMM '92, pages
1�42, London, UK, UK, 1992. Springer-Verlag.

Index

(setf constant-variable)Generic Func-
tion, 60

(setf default-setf-expander)Generic Func-
tion, 64

(setf fdefinition)Generic Function, 56

(setf find-class)Generic Function, 63

(setf function-type)Generic Function,
58

(setf gethash) Generic Function, 24

(setf macro-function)Generic Function,
57

(setf package-name) Generic Function,
65

(setf package-nicknames)Generic Func-
tion, 65

(setf setf-expander)Generic Function,
64

(setf special-operator)Generic Func-
tion, 56

(setf special-variable)Generic Func-
tion, 61

(setf symbol-macro) Generic Function,
62

(setf symbol-plist) Generic Function,
62

(setf type-expander)Generic Function,
65

(setf value) Generic Function, 179

(setf variable-type)Generic Function,
62

:cleanup-thunk Initarg, 180

:contents Initarg, 25
:identifier Initarg, 180
:symbol Initarg, 179
:tag Initarg, 179
:value Initarg, 179
accumulation-variables Generic Func-

tion, 17
allocate-header Function, 129
allocate-rack Function, 129
bindings Generic Function, 17
block/tagbody-entry Class, 180
bound-variables Generic Function, 17
boundp Generic Function, 60
catch-entry Class, 179
clause Class, 16
cleanup-thunk Generic Function, 180
compiler-macro-functionGeneric Func-

tion, 58
compound-forms-mixin Class, 16
constant-variableGeneric Function, 60
cons Function, 129
contents Generic Function, 25
copy-object Function, 128
declarations Generic Function, 17
default-setf-expanderGeneric Function,

64
dynamic-environment-entry Class, 178
environment Class, 55
eq-hash-table-mixin Class, 24
eql-hash-table-mixin Class, 24
equal-hash-table-mixin Class, 24

227

228 INDEX

equalp-hash-table-mixin Class, 25
exit-point-entry Class, 178
fboundp Generic Function, 55
fdefinition Generic Function, 56
final-bindings Generic Function, 17
find-class Generic Function, 63
find-package Generic Function, 65
fmakunbound Generic Function, 55
function-ast Generic Function, 60
function-cell Generic Function, 59
function-inline Generic Function, 59
function-lambda-listGeneric Function,

60
function-type Generic Function, 58
function-unbound Generic Function, 59
gethash Generic Function, 23
gethash Method, 25
hash-table-count Generic Function, 23
hash-table-p Generic Function, 23
hash-table-test Generic Function, 24
hash-table-test Method, 24, 25
hash-table Class, 23
identifier Generic Function, 180
initial-bindings Generic Function, 17
invalidate Generic Function, 179
list-hash-table Class, 25
loop-return-clause-mixin Class, 16
macro-function Generic Function, 57
make-array Function, 129
multiple-values-entry Class, 180
package-name Generic Function, 65
package-nicknamesGeneric Function, 65
remhash Generic Function, 24
setf-expander Generic Function, 64
special-binding-entry Class, 179
special-operator Generic Function, 55
special-variable Generic Function, 61
standard-hash-table Class, 25
subclauses-mixin Class, 16
symbol-macro Generic Function, 61
symbol-plist Generic Function, 62
symbol Generic Function, 179

tag Generic Function, 179
type-expander Generic Function, 64
unwind-protect-entry Class, 180
valid-p Generic Function, 178
value Generic Function, 179
var-and-type-spec-mixin Class, 16
variable-cell Generic Function, 63
variable-type Generic Function, 62
variable-unbound Generic Function, 63
(setf compiler-macro-function)

Generic Function, 58
(setf function-inline)

Generic Function, 59
(setf function-lambda-list)

Generic Function, 60

	Introduction
	I Portable modules
	Reader
	Printer
	Pretty printer
	The format function
	The loop macro
	Current state
	Protocol
	Package
	Classes
	Functions

	High-level functions on lists
	Sequence functions
	Current state
	Future work

	Hash tables
	Package
	Protocol
	Implementation
	Hash table implemented as a list of entries

	Type declarations of standard Common Lisp functions
	Documentation strings for all Common Lisp symbols
	Condition system
	Arithmetic
	Array

	II System-specific modules
	Data representation
	Low-level tag bits
	Immediate objects
	Characters
	Single floats

	Representation of cons cells
	Representation of standard objects
	Flexible instances
	Funcallable standard objects
	Code objects
	Rigid instances
	Instances of built-in classes
	Instances of sequence
	Arrays
	Symbols
	Packages
	Hash tables
	Streams
	Functions

	Environments
	The global environment
	Global environment protocol
	The static runtime environment
	Runtime information

	Object system
	Classes of class metaobjects
	Standard classes
	Built-in classes
	Condition classes
	Structure classes

	Generic function dispatch
	Call history
	The discriminating function
	Accessor methods

	Dealing with metastability issues
	Implementing slot-value and (setf slot-value)

	Setf expanders
	Compiler
	General description
	Different uses of the compiler
	Compilation phases
	Reading the source code
	Conversion from CST to AST
	Conversion from AST to HIR
	HIR transformations
	Conversion from HIR to MIR
	Conversion from MIR to LIR
	Code generation
	Access to special variables and global functions
	Access to array elements
	Access to slots of standard objects

	Random thoughts

	Compiled files
	Cross compilation
	General issues with cross compilation
	Environments
	Compile-time processing of standard macros

	Bootstrapping
	General technique
	Global environments for bootstrapping
	Viable image
	Bootstrapping stages
	Stage 1, bootstrapping CLOS

	Garbage collector
	Global collector
	General description
	Idle phase
	Requesting roots
	Waiting for roots
	Mark
	Collecting unmarked dyads
	Freeing unmarked racks
	Merging free lists
	Clearing mark bits
	Write barrier
	Protocol

	Nursery collector
	General description
	Allocation
	Finding roots
	Mark phase
	Promotion phase
	Compaction phase
	Break table build phase
	Pointer adjustment phase

	Synchronization between collectors
	Running application thread
	Application thread about to block
	Application thread waking up after block
	Preparing for a global collection

	Implementation

	Debugger
	Processing arguments
	Calling error
	Checking the minimum argument count
	Checking the maximum argument count
	Initializing required parameters
	Initializing optional parameters
	Initializing keyword parameters to nil
	Creating the &rest parameter
	Initializing keyword parameters
	Checking that the number of arguments is even
	Initializing a single keyword parameter
	Checking the presence of :allow-other-keys
	Checking the validity of every keyword

	Processing return values
	Replacing the multiple-to-fixed-instruction
	Replacing the fixed-to-multiple-instruction

	III Backends
	x86-64
	Register usage
	Representation of function objects
	Calling conventions
	Use of the dynamic environment
	Transfer of control to an exit point
	Address space layout
	Parsing keyword arguments

	HIR interpreter

	IV Contributing to SICL
	General Common Lisp style guide
	Purpose of style restrictions
	Width of a line of code
	Commenting
	Blank lines
	car, cdr, first, etc are for cons cells
	Different meanings of nil
	Tests in conditional expressions
	General structure of recursive functions
	Using car and cdr vs. using first and rest

	SICL-specific style guide
	Commenting
	Designators for symbol names
	Docstrings
	Naming and use of slots
	Standard functions
	Standard macros
	Compiler macros
	Conditions and restarts
	Condition reporting
	Internationalization
	Package structure
	Assertions
	Threading and thread safety

	List of tasks of limited size
	Implement hash tables
	Implementation using a list
	Implementation using open hashing
	Implementation using vector buckets

	Implement streams
	Better error messages for the loop module
	Better error messages by the lambda-list parser

	V Appendices
	All standard macros
	Removed systems
	Stack-oriented C backend
	Concrete Common Lisp backend
	Extrinsic HIR interpreter backend
	Abstract machine backend
	X86 assembler
	Global system definition and associated package file
	File containing definitions of tag bits

	Memory allocator
	Memory is divided into chunks
	Bins of chunks of similar size
	Linking a chunk into a bin
	Allocating a chunk
	Freeing a chunk
	Concurrency

	Bootstrapping principles
	General restrictions
	Object creation
	Checking the validity of initargs to make-instance
	Object initialization
	Processing the defclass macro
	Initialization of class metaobjects
	Accessing slots

	Bibliography
	Index

