
Fast, Maintainable, and Portable Sequence Functions

Irène Durand
Robert Strandh

University of Bordeaux
351, Cours de la Libération

Talence, France
irene.durand@u-bordeaux.fr

robert.strandh@u-bordeaux.fr

ABSTRACT
The Common Lisp sequence functions are challenging to im-
plement because of the numerous cases that need to be taken
into account according to the keyword arguments given and
the type of the sequence argument, including the element
type when the sequence is a vector.

For the resulting code to be fast, the different cases need
to be handled separately, but doing so may make the code
hard to understand and maintain. Writing tests that cover
all cases may also be difficult.

In this paper, we present a technique that relies on a good
compiler to optimize each separate case according to the
information available to it with respect to types and values
of keyword arguments. Our technique uses a few custom
macros that duplicate a general implementation of the body
of a sequence function. The compiler then specializes that
body in different ways for each copy.

CCS Concepts
•Software and its engineering → Abstraction, mod-
eling and modularity; Software performance; Com-
pilers;

Keywords
Common Lisp, Compiler optimization, Portability, Main-
tainability

1. INTRODUCTION
The Common Lisp [1] sequence functions are challenging

to implement for several reasons:

• They take several keyword parameters that modify the
behavior in different ways. Several special cases must
therefore be taken into account according to the value
of these keyword parameters.

• In order for performance to be acceptable, different

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ELS ’17, April 3 – 6 2017, Brussels, Belgium Copyright is held by the
owner/author(s).

variations may have to be implemented according to
the type of the sequence to be traversed.

• When the sequence is a vector, it may be necessary to
specialize the implementation according to the element
type of the vector, and according to whether the vector
is a simple array or not.

For reasons of maintainability, it is advantageous to cre-
ate a small number of versions, each one containing a single
loop over the relevant elements. In each iteration of the
loop, tests would determine the exact action based on cur-
rent values of keyword arguments. In the case of a vector,
the general array accessor aref would be used to access the
elements.

On the other hand, for reasons of performance, it is prefer-
able to create a large number of different versions of each
function, each version being specialized according to the ex-
act values of the keyword arguments given. In the case of a
vector, it is also advantageous to have versions specialized to
the available element types provided by the implementation.
However, in this case, maintenance is problematic, because
each version has to be maintained and tested separately.

A compromise used by some implementations is to use the
Common Lisp macro system to abstract some of the spe-
cialization parameters as macro arguments. With this tech-
nique, a special version is created by a call to some general
macro, providing different cases for keyword parameters, ele-
ment types, test functions, etc. We find that this technique
results in code that is extremely hard to understand, and
therefore to be perceived as correct by maintainers.

In this paper, we present a different technique. We use
the Common Lisp macro system, but not in order to cre-
ate macros that, when called, create special versions of a
sequence function. Instead, our technique makes it possi-
ble to write very few versions of each sequence function,
thus keeping a high degree of maintainability. Most of our
macros have no apparent role in our functions, so do not
require the maintainer to understand them. Instead, they
serve the sole purpose of allowing the compiler to generate
efficient code.

Our technique was developed as part of the SICL project1

which aims to supply high quality implementation-independent
code for a large part of the Common Lisp standard.

2. PREVIOUS WORK
1See https://github.com/robert-strandh/SICL

Most implementations process list elements in reverse or-
der when :from-end is true only when the specification re-
quires it, i.e., only for the functions count and reduce.

We designed a technique [3] that allows us to always pro-
cess list elements in reverse order very efficiently when :from-

end is true. Since that paper contains an in-depth descrip-
tion of our technique, and in order to keep the presentation
simple, in this paper, no example traverses the sequence
from the end.

2.1 ECL and Clasp
The sequence functions of ECL have a similar superficial

structure to ours, in that they take advantage of custom
macros for managing common aspects of many functions
such as the interaction between the test and test-not key-
word arguments, the existence of keyword arguments start
and end, etc. But these macros just provide convenient syn-
tax for handling shared aspects of the sequence functions.
They do not assist the compiler with the optimization of
the body of the code.

For functions for which the Common Lisp specification
allows the implementation to process elements from the be-
ginning of the sequence even when from-end is true, ECL
takes advantage of this possibility. For the count function
applied to a list, ECL simply reverses the list before pro-
cessing the elements.

The Common Lisp code base of Clasp is derived from that
of ECL, and the code for the sequence functions of Clasp is
the same as that of ECL.

2.2 CLISP
The essence of the code of the sequence functions of CLISP

are written in C, which makes them highly dependent on
that particular implementation. For that reason, CLISP is
outside the scope of this paper.

2.3 SBCL
The sequence functions of SBCL are implemented using a

mixed approach.
Macros are used to create special versions for the purpose

of better performance. Transformations during compilation
can replace a general call to a sequence function by a call
to a special version when additional information is available
such as when the sequence is a specialized vector, or when
some keyword argument has a particular explicit value in
the call.

Macros are also used to abstract details of combinations
of values of keyword arguments.

However, when little information is available at the call
site, a call to the general purpose function is maintained,
and no particular attempt has been made to optimize such
calls. As a result, in order to obtain high performance with
the SBCL sequence functions, the programmer has to supply
additional explicit information about the element type (in
case of a vector) and explicit keyword arguments to such
calls.

2.4 Clozure Common Lisp
The sequence functions of Clozure Common Lisp are im-

plemented according to the approach where each function
has a number of special versions according to the type of
the sequence and the combination of the values of the key-
word arguments.

However, the code in Clozure Common Lisp contains very
few attempts at optimizing performance. For example, while
there is an explicit test for whether a vector to be used as a
sequence is a simple array, there is no attempt to specialize
according to the element type of the vector.

3. OUR TECHNIQUE
We illustrate our technique with a simplified version of the

function find. Recall that this function searches a sequence
for the first occurrence of some item passed as an argument,
and that the behavior can be altered as usual with parame-
ters for determining the comparison function, a key function
to apply to each element, the direction of the search, and the
interval to search.

Our version is simplified in the following way:

• The only type of sequence handled is vector.

• The test function is fixed to be eql.

• The interval to search is the entire vector.

• The key function to apply to each element is fixed to
be identity.

• The search is from the beginning of the vector.

In the general version of the find function, all these pa-
rameters must of course be taken into account, and then our
technique becomes even more applicable and even more im-
portant. But the general version does not require any addi-
tional difficulty beyond what is needed for the special case,
and the general case would only clutter the presentation,
hence the special version which we will call find-vector.

Clearly, in terms of portability and maintainability, it
would be desirable to implement find-vector like this:

(defun find-vector-1 (item vector)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(loop for index from 0 below (length vector)

for element = (aref vector index)
when (eql item element)
return element))

Unfortunately, most implementations would have difficul-
ties optimizing this version, simply because the exact action
required by the function aref depends on the element type
of the vector, and whether the vector is a simple-array. This
information is clearly loop invariant, but most compilers do
not contain adequate optimization passes in order to dupli-
cate and specialize the loop.

To improve code layout, in what follows, we assume the
following type definition:

(deftype simple-byte-vector ()
‘(simple-array (unsigned-byte 8)))

To help the compiler, one can imagine a version like this:

(defun find-vector-2 (item vector)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(if (typep vector ’simple-byte-vector)

(loop for index from 0 below (length vector)
for element = (aref vector index)
when (eql item element)
return element)

(loop for index from 0 below (length vector)
for element = (aref vector index)
when (eql item element)
return element)))

Here, we have illustrated the specialization with a non-
standard element type, so that either an implementation-
specific type predicate has to be used, or (as in our example)
a call to typep is needed.

Whether a local declaration of the type of the vector
in addition to the call to typep is required for the com-
piler to optimize the call to aref is of course implementa-
tion specific. Similarly, whether a special version (possibly
implementation-specific) of aref is required also depends on
the implementation.

Not only do we now have implementation-specific code,
but we also have a maintenance problem. The loop will
have to be duplicated for each sequence function, and for ev-
ery specific type that the implementation can handle. This
duplication requires separate tests for each case so as to
guarantee as much coverage as possible. Given the number
of combinations of types, plus the additional parameters we
have omitted, this requirement quickly becomes unmanage-
able.

To solve this problem, we introduce a macro with-type

that abstracts the implementation-specific information and
that takes care of duplicating the loop:

(defmacro with-vector-type (vector-var &body body)
‘(macrolet ((vref (array index)

‘(aref ,array ,index)))
(if (typep ,vector-var ’simple-byte-vector)

(locally (declare (type simple-byte-vector
,vector-var))

,@body)
(progn
,@body))))

Here, we have introduced a new operator named vref in
the form of a local macro, and that is globally defined to
expand to aref. This global definition works for SBCL,
but different implementations may need different expansions
in different branches. For example, some implementations
might need for the macro to expand a call to sbit in a
branch where the vector is a simple bit vector.

We have also introduced a local declaration for exact type
of the vector in the specialized branch. Each implementation
must determine whether such a declaration is necessary.

Using this macro, we can now write our function find-

vector like this:

(defun find-vector-4 (item vector)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(with-vector-type vector
(loop for index from 0 below (length vector)

for element = (vref vector index)
when (eql item element)
return element)))

We notice a couple of essential properties of this code:

• The exact set of available vector types in the imple-
mentation is hidden inside the macro with-vector-

type, which would have a different version in differ-
ent Common Lisp implementations, but there will be
a single occurrence of this macro for all the sequence
functions.

• The maintenance problem resulting from duplicating
the loop has disappeared, because the macro with-

vector-type is in charge of the duplication, making it
certain that the copy is exact.

For a second example in the same spirit, consider how
the keyword parameter end is handled when the sequence is
a list. Again, we illustrate our technique with a simplified
version of the find function.

As for the previous example, in terms of portability and
maintainability, it would be desirable to implement find-

list like this:

(defun find-list-1 (item list &key end)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(loop for index from 0

for element in vector
when (and (not (null end)) (>= index end))
return nil

when (eql item element)
return element))

As with the previous example, most Common Lisp imple-
mentations would have difficulties optimizing the code, even
though the test (null end) is loop invariant. We solve this
problem by introducing the following macro:

(defmacro with-end (end-var &body body)
‘(if (null ,end-var)

(progn ,@body)
(progn ,@body)))

The code for find-list can now be written like this:

(defun find-list-2 (item list &key end)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(with-end end
(loop for index from 0

for element in vector
when (and (not (null end)) (>= index end))
return nil

when (eql item element)
return element))

We notice that the loop body looks the same as in the
portable and maintainable version shown before, and the
only difference is that the loop has been wrapped in a call
to the macro with-end. A good compiler will now specialize
each of the two copies of the loop introduced by the with-

end macro according to the value (i.e., nil or not) of the
variable end. In the first copy, the entire first when clause of
the loop will be removed. In the second copy, the test in the
first when clause of the loop is reduced to the comparison
between index and end.

4. PROPERTIES OF OUR TECHNIQUE

4.1 Performance
We compared performance of our technique for the find

function shown in Appendix B to the performance of the
find function shipped with SBCL.

We tested the performance of our technique only on SBCL
because it is one of the few implementations that has a com-
piler that implements all the optimizations that our tech-
nique requires in order to perform well.

The results show a significant performance gain compared
to the find function of SBCL. In fact, as it turns out, the
SBCL sequence functions often require the programmer to
declare the element type (when the sequence is a vector)
in order for performance to be improved. We have not at-
tempted to compare our technique to this case, for the sim-
ple reason one of the advantages of our technique is precisely

that no additional information is required in order for per-
formance to be acceptable.

Most of our tests use relatively fast test functions such as
eq or eql. This is a deliberate choice, as we want to compare
the performance of the traversal of the sequence, and a more
time-consuming test function would dominate the execution
time.

4.1.1 Results on vectors
When the sequence is a vector, the main performance con-

sideration has to do with the element type of the vector. The
parameters start, end, and from-end do not significantly al-
ter the way the traversal is implemented. The key function
may influence performance, but for the cases that we treat
specially, only unspecialized vectors are concerned.

Our first test shows the performance comparison for an
unspecialized vector with the key function being identity

and the test function being eq. As shown in the diagram
below, our function is around three times as fast as that of
SBCL.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

Vector length (eq symbol)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

The next test shows a vector with the element type being
character. The key function is identity, and the test

function is eql. As shown in the diagram below, our function
is around twice as fast as that of SBCL.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

Vector length (eql char)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

The next test shows a vector with the element type being
(unsigned-byte 8) and the test function being =. In this
case, our function is only around 20% faster than that of
SBCL. This modest improvement can be explained by the
fact that this test function is not one of the functions that
we treat in a special way. An implementation that wishes
better performance for this case can modify the macros to
reflect this desire.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

Vector length (= ub8)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

For completeness, we finally show a test for a vector with
the element type being bit. In this case, our technique is
slow, because it accesses the elements one at a time, whereas
a good, native implementation of find would use available
processor instructions to handle an entire word at a time [2].

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

Vector length (= bit)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

4.1.2 Results on lists
When the sequence is a list, the concept of element type is

not applicable. The key function is important, because the
sequence functions may be used for association lists. For
that reason, we include a test with car as a key function.
Also, for lists, the parameter end may influence the per-
formance. In our implementation, we specialize the loops
according to whether this parameter is nil or a number,
allowing for two different specialized versions of the main
traversal loop.

Our first test, like the first one on a vector, traverses a list
of symbols. The test function is eq, and no end parameter
has been given, which is equivalent to giving it the value
nil. Again, our implementation is around three times as
fast as that of SBCL.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

List length (eq symbol)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

In the next test, the sequence is a list containing only
bignums. The test function is =. As the diagram shows,
our technique is only moderately faster than that of SBCL.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

List length (= bignum)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

In the next test, the sequence is a list where each element
is a list where the first element is a bignum, so that we
can use car as a key function. The test function is still
=. There seems to be no significant difference for this case,
compared to the previous one, suggesting that the native
implementation of car is so fast that calling = will dominate
the computation.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

List length (= car)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

In the next test, the sequence is a list of pairs of symbols;
it uses car as key function, eq as test function and a non
nil value for the end parameter. Our implementation is at
least twice as fast as that of SBCL.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

List length (eq car end)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

Our final test uses a non nil value for the end parameter.
Despite the fact that we use a slightly more expensive test

function (namely =), the performance of our implementation
is very good; it is around three times as fast as that of SBCL.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

List length (= end)

Comparison between two nd functions (SBCL/SICL)

SBCL
SICL

4.2 Maintainability
From the point of view of maintainability, there are clear

advantages to our technique. With only a small amount of
macro code, we are able to hide the implementation details
of the functions, without sacrificing performance.

The small amount of macro code that is needed to make
our technique work is clearly offset by the considerable de-
crease in the code size that would otherwise have been re-
quired in order to obtain similar performance.

4.3 Disadvantages
There are not only advantages to our technique.
For one thing, compilation times are fairly long, for the

simple reason that the body of the function is duplicated a
large number of times. Ultimately, the compiler eliminates
most of the code, but initially the code is fairly large. And
the compiler must do a significant amount of work to deter-
mine what code can be eliminated. To give an idea of the
orders of magnitude, in order to obtain fully-expanded code
on SBCL, we had to increase the inline limit from 100 to
10 000, resulting in a compilation time of tens of seconds for
a single function.

Another disadvantage of our technique is that it doesn’t
lend itself to applications using short sequences. For such
applications, it would be advantageous to inline the sequence
functions, but doing so would make each call site suffer the
same long compilation times as we now observe for the or-
dinary callable functions.

Not all compilers are able to optimize the main body of a
function according to some enclosing condition. For a Com-
mon Lisp implementation with a more basic compiler, no
performance improvement would be observed. In addition,
the duplication of the main body of the function would re-
sult in a very large increase of the code size, compared to a
simpler code with the same performance.

For the special case of bit vectors, our technique will not
be able to compete with a good native implementation of
the sequence functions. The reason is that, despite the opti-
mizations that the compiler can perform with our technique,
the body of a typical sequence function still consists of a loop
where each iteration treats a single element. A native imple-
mentation would not treat a single element in an iteration.
Instead, it would take advantage of instructions that exist
in most processors for handling an entire word at a time,
which on a modern processor translates to 64 bits. An im-
plementation that uses our technique would then typically
handle bit vectors as a special case, excluded from the gen-
eral technique.

5. CONCLUSIONS AND FUTURE WORK
We have presented a technique that allows implementa-

tions of most of the Common Lisp sequence functions that
are simultaneously fast, maintainable, and portable, pro-
vided the compiler supplied by the implementation is suffi-
ciently sophisticated to apply certain standard optimization
techniques.

The main exception for which our technique is generally
unable to compete with a native implementation is when the
sequence is a bit vector. Any implementation that accesses
the elements of the bit vector one at a time, rather than
using native instructions that can handle an entire word at
a time, is unable to match the native performance [2]. On
the other hand, our technique allows the Common Lisp im-
plementation to treat bit vectors as an exceptional case, and
use our general technique for the other cases.

We have yet to perfect the exact declarations to include
in our implementation, and the exact places where these
declarations should be added. Different Common Lisp im-
plementations have different requirements in this respect, so
this work may have to be repeated for different implemen-
tations.

At the moment, we have been working exclusively with
SBCL, for the simple reason that the SBCL compiler does
provide the optimizations that are required in order for our
technique to yield excellent performance. We intend to ex-
periment with other major implementations as well in order
to determine which ones are suited for our technique.

The Cleavir compiler framework of the SICL project will
ultimately include a technique for path replication in inter-
mediate code, that, while not specifically meant for the kind
of optimization required for the technique presented in this
paper, will have the same effect as more direct techniques
currently used in advanced compilers.

Our technique is well adapted to processing sequences
with a relatively large number of elements. When the se-
quence contains few elements, the overhead of the call and of
processing the keyword arguments may be significant. Also,
we do not take advantage of any declaration of element type,
in the case when the sequence is a vector. We plan to in-
vestigate the possibility of modifying our macros so that
definitions of specialized functions are automatically gener-
ated, leaving a fairly small general function that can then
be inlined.

6. ACKNOWLEDGMENTS
We would like to thank Bart Botta, Pascal Bourguignon,

and Philipp Marek for providing valuable feedback on early
versions of this paper.

7. REFERENCES

[1] INCITS 226-1994[S2008] Information Technology,
Programming Language, Common Lisp. American
National Standards Institute, 1994.

[2] H. G. Baker. Efficient implementation of bit-vector
operation in common lisp. SIGPLAN Lisp Pointers,
III(2-4):8–22, Apr. 1990.

[3] I. Durand and R. Strandh. Processing list elements in
reverse order. In Proceedings of the 8th European Lisp
Symposium, ELS ’15, 2015.

APPENDIX
A. PROTOCOL

In this appendix, we describe the macros and functions
that are part of the protocol of our technique, used for im-
plementing most of the sequence functions.

apply-key-function element key-function [Function]

This function takes an element of the sequence and a func-
tion to apply in order to obtain the object to use for com-
parison. For performance reasons, this function should be
inlined.

A typical definition of this function might look like this:

(defun apply-key-function (element key-function)
(declare (optimize (speed 3) (debug 0) (safety 3)))
(declare (type function key-function))
(cond ((eq key-function #’identity)

element)
((eq key-function #’car)
(car element))
((eq key-function #’cdr)
(cdr element))
(t
(funcall key-function element))))

canonicalize-key key-var [Macro]

This macro takes a single argument which must be a vari-
able that holds the value of the &key keyword argument. Its
role is to make sure the contents of the variable is a function.
A typical implementation might look like this:

(defmacro canonicalize-key (key-var)
‘(cond ((null ,key-var)

(setf ,key-var #’identity))
((not (functionp ,key-var))
(setf ,key-var (fdefinition ,key-var)))
(t nil)))

with-key-function key-function-var &body body [Macro]

This macro takes a single argument which must be a vari-
able that holds the value of the canonicalized &key keyword
argument. It is used to duplicate body for different typical
values for the key argument to many sequence functions. A
typical implementation of this macro looks like this:

(defmacro with-key-function (key-function-var &body body)
‘(cond ((eq ,key-function-var #’identity)

,@body)
((eq ,key-function-var #’car)
,@body)
((eq ,key-function-var #’cdr)
,@body)
(t
,@body)))

In each clause of the cond form in this macro, the in-
lined version of the function apply-key-function will be
simplified in a different way by the compiler, resulting in a
specialized loop.

for-each-relevant-cons

(cons-var index-var list start end from-end) &body body [Macro]

This macro executes body for each relevant cons cell. It
takes into account the values of start and end to restrict the

execution to a particular sub-sequence, and it takes into ac-
count the value of from-end to determine the order in which
the relevant cons cells are supplied to the body code. The
parameter cons-var is the name of a variable that contains
a reference to the relevant cons cell for each execution of
body. Similarly, the parameter index-var is the name of a
variable that contains the index of the particular cons cell
to be processed.

Because of the size of the definition of this macro, due
mainly to the code for processing cons cells in reverse order
[3], we do not show its definition here.

with-test-and-test-not

(test-var test-not-var) &body body [Macro]

The role of this macro is to supply certain special cases
for the possible values of the keyword parameters test and
test-not of a typical sequence function. It is assumed that
it has already been verified that at most one of the two
keyword arguments has a value other than nil. A typical
implementation might look like this:

(defmacro with-test-and-test-not
((test-var test-not-var) &body body)

‘(cond ((null ,test-not-var)
(locally (declare (type function ,test-var))
(cond ((eq ,test-var #’eq)

,@body)
((eq ,test-var #’eql)
,@body)
(t
,@body))))

((null ,test-var)
(locally (declare (type function ,test-not-var))
(cond ((eq ,test-not-var #’eq)

,@body)
((eq ,test-not-var #’eql)
,@body)
(t
,@body))))

(t nil)))

with-from-end from-end-var &body body [Macro]

This macro duplicates body for the two cases where the
value of the argument variable from-end-var is either true
or false. A typical implementation looks like this:

(defmacro with-from-end (from-end-var &body body)
‘(if ,from-end-var

(progn ,@body)
(progn ,@body)))

satisfies-two-argument-test-p

item element test test-not [Function]

This function is typically inlined. It provides special cases
for common values of the test and test-not keyword argu-
ments of a typical sequence function. All but one of these
cases will be eliminated in each branch of the macro with-

test-and-test-not in which this function is located. A
typical implementation might look like this:

(defun satisfies-two-argument-test-p
(item element test test-not)

(declare (optimize (speed 3) (debug 0) (safety 3)))
(cond ((null test-not)

(locally (declare (type function test))
(cond ((eq test #’eq)

(eq item element))
((eq test #’eql)
(eql item element))
(t
(funcall test item element)))))

((null test)
(locally (declare (type function test-not))
(cond ((eq test-not #’eq)

(not (eq item element)))
((eq test-not #’eql)
(not (eql item element)))
(t
(not (funcall test-not item element))))))

(t nil)))

for-each-relevant-element

element-var index-var vector start end
from-end &body body [Macro]

This macro is used to traverse the elements of a vector.
The argument element-var is a symbol that is bound to each
element during the execution of body. Similarly, element-
var is a symbol that is bound to the index of the relevant
element. The vector argument is an expression that must
evaluate to a vector. The arguments start and end are ex-
pressions that evaluate to the two indices of the interval to
traverse. Finally, from-end is a generalized Boolean that
indicates whether the traversal is to be done from the end
of the relevant interval. A typical implementation of this
macro might look like this:

(defmacro for-each-relevant-element
((elementv indexv vector start end from-end)
&body body)

(let ((vectorv (gensym))
(startv (gensym))
(endv (gensym)))

‘(let ((,vectorv ,vector)
(,startv ,start)
(,endv ,end))

(declare (type fixnum ,startv ,endv))
(if ,from-end

(loop for ,indexv downfrom (1- ,endv)
to ,startv

do (let ((,elementv
(aref ,vectorv ,indexv)))

,@body))
(loop for ,indexv from ,startv below ,endv

do (let ((,elementv
(aref ,vectorv ,indexv)))

,@body))))))

with-simple vector &body body [Macro]

This macro simply checks whether vector is a simple-

array, and duplicates body in each branch of the test. A
typical implementation might look like this:

(defmacro with-simple (vector &body body)
‘(if (typep ,vector ’simple-array)

(progn ,@body)
(progn ,@body)))

with-vector-type vector-var &body body [Macro]

This macro duplicates body for each possible value of array-
upgraded-element-type that the implementation provides.
It also provides a local definition for the macro vref which
we use instead of aref to access the elements of the vector
in body. If the compiler of the implementation is unable to

specialize aref according to the element type, then the im-
plementation may provide different definitions of the macro
vref for different element types. Since the supported ele-
ment types vary from one implementation to another, we do
not provide an example of how this macro may be imple-
mented.

B. EXAMPLE IMPLEMENTATION
As an example of how the sequence functions might be

implemented using the functions and macros in Appendix A,
we show our implementation of find-list which is called
from find when the sequence is known to be a list:

(defun find-list
(item list from-end test test-not start end key)

(declare (optimize (speed 3) (debug 0) (safety 0)))
(declare (type list list))
(with-bounding-indices-list (start end)

(with-key-function key
(with-test-and-test-not (test test-not)

(with-from-end from-end
(for-each-relevant-cons

(cons index list start end from-end)
(let ((element (apply-key-function

(car cons) key)))
(when (satisfies-two-argument-test-p

item element test test-not)
(return-from find-list element)))))))))

