
Processing List Elements in Reverse Order

Irène Durand and Robert Strandh
University of Bordeaux

Science and Technology College
LaBRI, 351, Cours de la Libération

33405 Talence Cedex, France
robert.strandh@u-bordeaux.fr
irene.durand@u-bordeaux.fr

ABSTRACT
The Common Lisp sequence functions and some other func-
tions such as reduce accept a keyword parameter called
from-end. In the case of count and reduce, when the value
of that parameter is true, it is required that the elements are
processed in reverse order. Some implementations, in par-
ticular SBCL, CCL, and LispWorks, implement the reverse-
order traversal of a list by non-destructively reversing the
list and then traversing the reversed version instead. This
technique requires O(n) additional heap space (where n is
the length of the list), and increases the amount of work
required by the garbage collector.

In this paper, we present a technique that only uses addi-
tional stack space. To avoid stack overflow, our technique
traverses parts of the list multiple times when the list has
more elements than the available stack space can handle. We
show that our technique is fast, in particular for lists with a
large number of elements, which is also the case where it is
the most important to avoid allocating heap space.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code genera-
tion, Run-time environments

General Terms
Algorithms, Languages

Keywords
Common Lisp, List processing

1. INTRODUCTION
The Common Lisp sequence functions are defined to work
on lists as well as vectors. Furthermore, many of these se-
quence functions accept a keyword argument from-end that
alters the behavior, in that elements toward the end of the
sequence are favored over elements toward the beginning of

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee.
ELS ’15, April 20 - 21 2015, London, UK Copyright is held by the authors.

the sequence. Other functions, in particular reduce, also
accept this keyword argument.

Most sequence functions are not required to process the el-
ements from the end of the sequence even though the value
of the from-end keyword argument is true. For example, it
is allowed for find to compare elements from the beginning
of the sequence and return the last element that satisfies the
test1 even if the test has side effects. There is one exception,
however: The count function is required by the standard to
test the elements from the end of the sequence.2 In addi-
tion to the function count, the function reduce also requires
processing from the end of the list when from-end is true.

Processing list elements from the beginning to the end could,
however, have a significant additional cost associated with it
when processing from the end would require fewer executions
of the test function, and the additional cost increases with
the complexity of the test.

In this paper, we will concentrate on the functions that are
required by the standard to process list elements from the
end, and we will use only the function count in our test
cases.

There are of course some very simple techniques for pro-
cessing elements from the end of a list. One such technique
would be to start by reversing the list3 and processing the
elements from the beginning in the reversed list. This tech-
nique is used by several implementations, including SBCL,
CCL, and LispWorks. A major disadvantage of this tech-
nique is that it requires O(n) additional heap space, and
that it requires additional execution time by the memory
allocator and the garbage collector.

Another simple technique would be to traverse the list re-
cursively and testing the elements during the backtracking

1The phrase satisfy the test has a precise meaning in the
Common Lisp standard as shown in section 17.2 in that
document.
2Though if the test has no side effects and cannot fail, as
is the case of functions such as eq or eql, testing from the
beginning is arguably conforming behavior.
3By reversing the list we do not mean modifying the list
as nreverse would do, but creating a new list with the el-
ements in reverse order as reverse would do. The reason
for excluding modifications to the list is that doing so might
influence the semantics of other functions, including perhaps
the test function or the view of the list by other threads.

phase of the recursion.4 Again, O(n) extra space is required,
even though this time it is stack space rather than heap
space, so that the memory allocator and the garbage col-
lector are not solicited, at least in most implementations.
Worse, many implementations have a fairly small call stack,
in particular in multi-threaded implementations where each
thread must have a dedicated stack. Aside from these disad-
vantages, this technique is however fairly efficient in terms of
execution time, because a simple function call is quite fast
on most modern processors. For that reason, we will use
recursion as the basis of the technique described in this pa-
per, but with fairly few recursive calls so that the additional
extra space is modest.

Throughout this paper, we assume that the lists to be pro-
cessed have a large number of elements, for several reasons:

• We do not want the list to be small enough to fit in the
cache, because cache performance depends on other
workloads as well.

• For short lists, performance may be dominated by the
overhead of calling a few functions, or by loop pro-
logues and epilogues. By using long lists, we make
sure that performance is dominated by traversing the
list and computing the test.

• If the list is too short, it can be processed by a simple
recursive technique. In order to avoid this possibility,
we want the lists to have orders of magnitude more
elements than the size of the stack.

Furthermore, throughout this paper, we will assume that
the test to be performed on the elements of the list is the
function eq. By making this assumption, we expose the
worst case for our technique, because the execution time
will then be dominated by the overhead of traversing the
list, as opposed to by executing the test function.

It should be noted that the difficulty of processing list ele-
ments in reverse order is due to the way Common Lisp prac-
tically imposes the representations of such lists. Other rep-
resentations are, of course, possible. For instance, Hughes
[2] suggested a representation of lists as first-class functions.
Similarly, in his talk on parallelism in 2009,5 Guy Steele pro-
posed a representation of lists for parallel processing, based
on using the four operations item, split, list, and conc.
Clearly, such alternative representations could be devised
that facilitate processing elements in reverse order.

In this paper, we use the international convention [1] for
writing logarithms. Hence, we write lbn for the logarithm
in base 2. We use log only when the base is unimportant.
Given a real number n, the notation bnc represents the floor
of n and dne ceiling. For example, b1.5c = 1 and d1.5e = 2.

4Despite considerable research, we have not been able to
find any original reference to this technique, and it seems
too trivial for standard text books to even discuss. We must
conclude that this technique must be so obvious that it was
probably discovered independenlty by several people.
5http://groups.csail.mit.edu/mac/users/gjs/
6.945/readings/MITApril2009Steele.pdf

2. PREVIOUS WORK
We will frequently refer to techniques used by SBCL be-
cause of its reputation as a high-performance implementa-
tion. We will however also use other high-performance im-
plementations for comparison when we have information on
the techniques used by those implementations, or when we
can reasonably guess these techniques from other evidence.

For its implementation of find, SBCL takes advantage of
the freedom given by the standard, by processing elements
from the beginning, and remembering the last element that
satisfies the test. For implementations where the technique
is unknown, it suffices to write a test function that counts
the number of times it is invoked and run it on a list where
only the last element satisfies the test.

For its implementation of count, SBCL uses the simple tech-
nique of reversing the list first and then processing the ele-
ments of the reversed list from the beginning.

As we already mentioned, we use recursion as the basis of our
technique, because it is quite fast. We devised the following
test to verify this hypothesis:

(defun recursive-count (x list)
(declare (optimize (speed 3) (debug 0) (safety 0)))
(if (endp list)

0
(+ (recursive-count x (cdr list))

(if (eq (car list) x) 1 0))))

On SBCL executing this function on a list with 50000 ele-
ments where no element satisfies the test takes around 4ns
per element compared to around 1.5ns for an explicit loop
from the beginning of the list, and around twice as fast as
calling count. This result indicates that we should use recur-
sion whenever the size of the stack allows it, though there is
of course no portable way of testing how much stack space
is available. However, each implementation might have a
specific way, which would then be good enough.

3. OUR TECHNIQUE
3.1 Basic technique
To illustrate our technique, we first show a very simple ver-
sion of it in the form of the following code:6

(defun count-from-end (x list)
(labels ((aux (x list n)

(cond ((= n 0) 0)
((= n 1)
(if (eq x (car list)) 1 0))
(t (let* ((n/2 (ash n -1))

(half (nthcdr n/2 list)))
(+ (aux x half (- n n/2))

(aux x list n/2)))))))
(aux x list (length list))))))

This function starts by computing the length of the list and
then calling the auxiliary function with the original argu-
ments and the length. The auxiliary function calls nthcdr

6Throughout this paper, we rely on the left-to-right evalua-
tion order mandated by the Common Lisp standard.

in order to get a reference to about half the list it was passed.
Then it makes two recursive calls, first with the second half
of the list and then with the first half of the list. The re-
cursion terminates when the list has a single element or no
element in it. When it has no element in it, clearly the count
is 0. When it has a single element in it, the element is com-
pared to the argument x and if they are the same, the value
1 is returned, otherwise 0 is returned.

The main feature of our technique is that it trades fewer
recursive calls for multiple traversals of the list. The maxi-
mum number of simultaneous active invocations of this sim-
ple function is around lbn, where n is the length of the list.
The maximum value of this number is quite modest. On
a 64-bit processor, it can never exceed 60 and it is signif-
icantly smaller in practice of course. The number of cdr

operations can be approximately expressed as n (1 + 1
2
lbn).

In Section 3.3 we analyze this result in greater depth.

The best case for this function is very efficient indeed. The
worst case is unacceptably slow. Even for a list of some
reasonable length such as a million elements, the execution
time is a factor 6 slower than for the best case.

The remainder of this section is dedicated to ways of im-
proving on the performance of the basic technique.

3.2 Using more stack space
By far the most important improvement to the basic tech-
nique is to take advantage of the available stack space to
decrease the number of multiple list traversals required by
the basic technique.

The following example illustrates this technique by using
the simple recursive traversal if there are fewer than 10000
elements in the list.7 If there are more elements, then it
divides the list in two, just like the basic technique shown
in Section 3.1.

(defun count-from-end-2 (x list)
(labels ((recursive (x list n)

(if (zerop n)
0
(+ (recursive x (cdr list) (1- n))

(if (eq x (car list)) 1 0))))
(aux (x list n)
(if (<= n 10000)

(recursive x list n)
(let* ((n/2 (ash n -1))

(half (nthcdr n/2 list)))
(+
(aux x half (- n n/2))
(aux x list n/2))))))

(aux x list (length list))))

With this improvement, the number of cdr operations re-

7The number 10000 was chosen to be a significant part of a
typical per-thread default stack while still leaving room for
stack space required by callers and callees of this function.
In a real production implementation, the number would be
chosen based on the remaining space left on the stack when
the function is called.

quired can now be expressed as approximately

n (1 +
1

2
lb

n

10000
)

which is significantly better than the corresponding value
for the basic technique.

However, there is no particular reason to divide the list into
2 equal-sized parts when there are too many elements for
the basic technique. Section 4 gives a more complete expla-
nation of the parameters involved and how they influence
the execution time of the resulting code.

3.3 Analyses
In this section we give approximate formulas for the perfor-
mance of our technique. The basic measure we are interested
in is the number of cdr operations that must be performed
as a function of the number of elements of the list. We will
denote the number of elements of the list by N and the num-
ber of cdr operations required by F (N). Since our technique
always starts by traversing the entire list in order to com-
pute N , we can always write F (N) as N + f(N), were f(N)
is the number of cdr operations required in the subsequent
step.

For the basic technique where the list is divided into two
equal-size sublists, we obtain the following recursive relation:

f(N) =

{
0 if N = 1⌊
N
2

⌋
+ f(

⌊
N
2

⌋
) + f(

⌈
N
2

⌉
) otherwise

In order to obtain an approximate solution to this relation,
we can solve for N being a power of 2, i.e., N = 2n. In that
case, for N > 1 we obtain:

f(N) =
N

2
+ 2f(

N

2
)

The details of the approximate resolution of this recursive
equation is given in the appendix. This solution yields

f(N) =
N

2
lb N + Nf(1) =

N

2
lb N

Including the traversal to compute the number of elements
of the list, we obtain:

F (N) =
N

2
lb N + N = N(1 +

1

2
lb N)

which is clearly O(N log N). More importantly, for a list
with around 16 million elements (which fills the default heap
of most implementations we have tested), we have N ≈ 224

which gives F (N) ≈ 13N which is probably unacceptably
slow.

Let us now consider what happens when we are able to han-
dle more than a single element with the basic recursive tech-
nique, as shown in Section 3.2. We denote the number of

elements that the basic recursive technique can handle by
K, and again, in order to simplify the analysis, we assume
that both N and K are powers of 2, i.e., N = 2n K = 2k,
and also that N ≥ K. The recursion relation now looks as
follows:

f(N) =

{
N − 1 if N ≤ K
N
2

+ 2f(N
2

) otherwise

The resolution of this equation is given in the appendix (Part
B). It yields:

f(N) ≈ N(1 +
1

2
lb

N

K
)

With the best portable version of our technique and a typical
stack being able to handle K = 214 we are now looking at
a performance for N = 224 of F (N) ≈ 6N . Comparing this
result to the technique of reversing the list, it is fair to say
that the overhead of allocating and subsequently garbage-
collecting a cons cell can very well be comparable to 6 times
the time taken by the cdr operation. In other words, the
performance of our portable version is already comparable
to an implementation based on first creating a reversed copy
of the list and then traversing that reversed copy.

Finally, instead of using more stack space for the base case,
let us analyze what happens if we divide the original list into
more than two parts. For this analysis, let us assume that
we divide the list into M equal parts, and that M also is a
power of 2 so that M = 2m. We then obtain the following
relation:

f(N) =

{
0 if N = 1
N − N

M
+ Mf(N

M
) otherwise

The resolution of this equation is given in the appendix (Part
C). It yields:

F (N) ≈ N(1 +
lb N

lb M
)

While it may appear that we can get very good performance
when M is chosen to be large, in practice, using large values
of M introduces a different kind of overhead, namely large
stack frames, making the gain less than what the formula
suggests.

3.4 Implementation-specific solutions
So far, we have explored techniques that can mostly be im-
plemented in portable Common Lisp. In this section, we
explore a variation on our technique that requires access to
the control stack of the implementation.

Recall that at the lowest level of our technique, there is a
recursive function that is used for traversing the list when

the number of elements is small compared to the stack size.
At each invocation, this function does very little work.

With direct access to the control stack, we can convert the
recursive function to an iterative function that pushes the
elements of the list on the control stack, and then processes
them in reverse order. This technique has several advan-
tages:

• A single word is used for each element, whereas the re-
cursive function requires space for a return address, a
frame pointer, saved registers, etc. As a result, this
technique can be used for lists with more elements
than would be possible with the recursive technique,
thereby further decreasing the number of times a list
is traversed.

• There is no function-call overhead involved. The only
processing that is needed for an element is to store it
on the stack and then comparing it to the item.

We illustrate this technique in a notation similar to Common
Lisp:

(defun low-level-reverse-count (item list length)
(loop for rest = list then (cdr rest)

repeat length
do (push-on-stack (car rest)))

(loop repeat length
count (eq item (pop-from-stack))))

We implemented this technique in SBCL. In order not to
have to recompile SBCL with our additional function, we
used the implementation-specific foreign-function interface
and wrote the function using the language C. Rather than
pushing and popping the control stack, we used the built-in
C function alloca to allocate a one-dimensional C array on
the control stack to hold the list elements.

In SBCL, the default stack size is 2MBytes, or around 250k
words on a 64-bit processor. We tested our technique using
100000 words on the stack. The result is that for a list
with 10 million elements, our technique processes the list in
reverse order as fast as an ordinary loop from the beginning
of the list.

This surprising result can be explained by a few factors:

• Presumably in order to speed up the functions car

and cdr, SBCL uses the same tag for cons cells and
for the symbol nil. As a result, in order to traverse
a list, SBCL must make two tests for each element,
namely one to check whether the putative list is some-
thing other than a list altogether, and another to check
whether it is a cons cell. When our technique traverses
a list for which the number of elements is known, there
is no need to make any additional tests, simply because
when the length of the list is positive, the first element
must be a cons cell.

• The SBCL compiler can not determine that the return
value of count must always be a fixnum.8 When the
function is implemented in C, this problem disappears.

If we put this technique in the perspective of the analyses in
Section 3.3, we can also see that the number of cdr opera-
tions remains quite modest, even for lists with a very large
number of elements.

There are several variations on this implementation-specific
technique. Some implementations might allocate a vector
or a list declared to be dynamic-extent on the stack, thus
giving essentially the same advantage as the version we im-
plemented in C. However, such a technique would still be
implementation specific, given that it is permitted for the
compiler to ignore dynamic-extent declarations. In the case
of SBCL, using such a declaration, we were able to obtain
performance almost as good as our C version. However,
as it turns out, SBCL only allocates a vector on the stack
under certain circumstances thereby making this technique
impossible to apply in general.

4. BENCHMARKS
We implemented ten different versions of reverse-count, a
function that counts elements of a list from the end. The
difference between these versions can be expressed in terms
of two different numeric parameters, namely:

1. the minimum number of elements for which we apply
the logarithmic method, consisting of dividing the list
into two equal-size halves, and

2. into how many chunks do we cut the list when the
number of elements is smaller than the first parameter,
but larger than the number of elements that can be
handled by the simple recursive technique.

In all of our versions, when the number of elements is less
than 10000, we process the elements using the purely recur-
sive technique where the element is processed in the back-
tracking phase.

For the purpose of this article, we have retained the one with
the best experimental behavior (v7) and compared it to two
more traditional versions (v0 and v1).

These three versions can be characterized as follows:

0. Version v0 uses the native count function called with
the from-end keyword argument set to t,

;; standard version

(defun reverse-count-0 (x list)

(count x list :from-end t :test #’eq))

8On a byte-addressed processor where n word-aligned bytes
are needed to represent a cons cell, the number of elements
in a list can be at most N/n where N is the maximum
number of possible addresses. In a system that uses at most
lb n tag bits for a fixnum, the value that count returns must
be a fixnum. While some systems might use 8 tag bits, SBCL
on a 64-bit platform uses a single tag bit for fixnums. As a
consequence, count must then return a fixnum.

1. Version v1 is the naive version consisting in revers-
ing the list before counting; this version uses the heap
space and no stack space.

(defun reverse-count-1 (x list)

(declare (optimize

(speed 3) (debug 0) (safety 0)

(compilation-speed 0)))

(loop for e in (reverse list)

count (eq x e)))

7. Version v7 divides the list in 2 parts if it has more
than one hundred million elements. Otherwise, if it
has more than 10000 elements, it divides it into chunks
that have 10000 elements each. Finally, if it has no
more than 10000 elements, then it uses the standard
recursive method.

We think this method is faster than the others, at least
for lengths no more than one hundred million elements,
because then it is guaranteed to traverse the list at
most 3 times + 1 time for computing the length. It
could be improved for lengths greater than one hun-
dred million by using a better division than 2 in this
case, but we have not attempted that improvement.
The code is given below.

(defun count-from-end-with-length-7 (x list length)

(declare (optimize (speed 3) (safety 0) (debug 0)

(compilation-speed 0)))

(declare (type fixnum length))

(labels (;; AUX1 is the recursive traversal

;; by CDR.

(aux1 (x list length)

(declare (type fixnum length))

(if (zerop length)

0

(+ (aux1 x (cdr list) (1- length))

(if (eq x (car list))

1

0))))

;; AUX2 recursive traversal

;; by (NTHCDR 10000 ...).

;; used when the length of the list is

;; less than 100000000.

(aux2 (x list length)

(declare (type fixnum length))

(if (<= length 10000)

(aux1 x list length)

(+ (aux2 x

(nthcdr 10000 list)

(- length 10000))

(aux1 x list 10000))))

;; AUX3 recursive traversal

;; by half the size of the list.

;; used for lists that have more than

;; 100000000 elements.

(aux3 (x list length)

(declare (type fixnum length))

(if (< length 100000000)

(aux2 x list length)

(let* ((n (ash length -1))

(middle (nthcdr n list)))

(+ (aux3 x middle (- length n))

(aux3 x list n))))))

(aux3 x list length)))

(defun reverse-count-7 (x list)

(count-from-end-with-length-7

x list (length list)))

Thanks to the help of the Lisp community, we could test
the behavior of these three versions on several implemen-
tations and architectures. In Figure 1, we summarize the
results of tests that worked for a list of size up to 107. In
many cases, the details of the implementation are unknown
or not shown. However, the purpose of the Figure 1 is not
to compare performance between different systems, but to
compare the performance of different versions of count on
each system. For that reason, the exact details of the sys-
tem are unimportant; we are only interested in whether v7

compares favorably to the other versions on most systems.
Furthermore, for some implementations, we had to change
the optimize settings and some other parameters in order
to get our code to work.9 For that reason, it is not possible
to compare the performance on different implementations in
Figure 1, even when the processor and the clock frequency
are the same.

To get a better idea of the difference in performance be-
tween the three versions of the count function, we selected
the table entry corresponding to the non-commercial im-
plementation that resulted in the greatest advantage of our
v7 compared to the other versions (Clozure CL 1.10-dev),
and we rendered the performance in the form of a graph.
The result is shown in Figure 2.

As Figure 2 shows, the performance of v7 is significantly
better than that of the other versions. Furthermore, the
fact that the curve for v7 is smoother than the curves for
other versions indicates that the performance of v7 is more
predictable. We attribute this behavior to the garbage col-
lector, which occasionally has to run when heap allocation
is required. Since v7 does not require any heap allocation,
the garbage collector is not solicited.

5. CONCLUSIONS AND FUTURE WORK
We have presented a general technique for processing el-
ements of a list from the last element to the first. The
implementation-specific version of our technique is compa-
rable in speed to traversing the list from the first to the last
element for all reasonably-sized lists. For very long lists, the
performance of our technique degrades modestly and grace-
fully.

Even the implementation-independent version of our tech-
nique performs well enough that it is preferable to the ex-

9In particular, LispWorks has a much smaller default stack
than for instance SBCL (16k words, compared to 250k
words) resulting in stack overflow of our benchmark with
default parameters. For that reason, we ran the LispWorks
benchmark with a smaller stack and with a higher value of
safety. The combination of these factors is the likely ex-
planation to the absence of performance improvement for
LispWorks. However, we are told that on 32-bit LispWorks
our technique gives a factor 10 improvement.

isting technique of reversing the list that is used in some
implementations.

We have presented our technique in the context of the func-
tion count because, together with reduce, processing the el-
ements from the end is required by the HyperSpec, whereas,
for other functions accepting the keyword argument
from-end, it is explicitly allowed to process the elements
from the beginning to the end.

However, our technique is potentially even more interest-
ing to use with functions such as find and position for
which it is not required to process the elements from the
end to the beginning. The reason is that when elements are
processed form the beginning to the end in these functions,
all elements must be tested. When the combination of the
test and the key functions has non-trivial computational
cost, a significant amount of work may be wasted. However,
when elements are processed in reverse order, a result can
be returned when the test is satisfied the first time, thereby
avoiding such wasted work.

Since the performance of our technique is not significantly
worse than processing from the beginning to the end, it is
very likely that our technique will be faster in almost all
cases. Only when the last element of the list to satisfy the
test is close to the beginning of the list will our technique
apply the test as many times as when processing is done
from the beginning to the end. We conjecture that, on the
average, our technique will be faster whenever the cost of
applying the test is at least that of a function call. If so, our
technique should be used in all cases except for those using
a very inexpensive test functions such as eq, and when the
implementation then uses a special version of the sequence
function where this test is inlined, so as to avoid a function
call.

Further research is required in order to verify our conjec-
ture. In order to determine the result with some accuracy,
additional parameters have to be taken into account. In par-
ticular, the position of the last element in the list to satisfy
the test must be taken into account, as well as the cost of
calling the test function. As usual, benchmarks will have to
be performed on a variety of implementations and proces-
sors, further complicating the verification of our conjecture.

6. ACKNOWLEDGMENTS
We would like to thank Pascal Bourguignon for reading and
commenting on an early draft of this paper. We would also
like to thank Alastair Bridgewater for helping us with the
foreign-function interface of SBCL. Finally, we would like
to thank Pascal Bourguignon, Alastair Bridgewater, James
Kalenius, Steven Styer, Nicolas Hafner, and Eric Lind for
helping us run benchmarks on platforms that are unavail-
able to us. Finally, we would like to thank Martin Simmons
at LispWorks technical support for giving us the informa-
tion we needed in order to explain the performance of our
technique on the LispWorks Common Lisp implementation.

System characteristics Time in seconds
Implementation Version Processor Frequency v0 v1 v7

LispWorks 6.1.1 Intel Core ? 0.20 0.18 0.14
Clozure CL 1.10 Intel Xeon 3.33GHz 1.93 1.79 0.15
Clozure CL 1.10-dev AMD FX ? 1.77 1.63 0.15

SBCL 1.2.8 Intel Xeon 3.33GHz 0.51 0.27 0.22
ABCL 1.3.1 Intel Xeon 3.33GHz 1.13 0.22 0.34
CLISP 2.49 X86 64 ? 1.15 1.14 0.87
ECL 13.5.1 ? ? 0.69 0.41 0.36

SBCL 1.2.7 Intel Core 2.53GHz 0.36 0.38 0.25

Figure 1: Performances of the three versions on several systems with a list of 107 elements

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

T
im

e
 i
n
 s

e
c
o
n
d
s

List length

Comparison between reverse-count functions

v0
v1
v7

Figure 2: Comparison of the behavior of the three versions on a single system

APPENDIX
Part A
In this part, we develop the details of the approximate so-
lution of the recursive equation defined in Section 3.3.

f(N) =
N

2
+ 2f(

N

2
)

Developing the second term of this equation one step, we
obtain:

f(N) =
N

2
+ 2f(

N

2
) =

=
N

2
+ 2(

N

4
+ 2f(

N

4
)) =

=
N

2
+

N

2
+ 4f(

N

4
) =

= 2
N

2
+ 4f(

N

4
)

Developing the second term of this equation one more step,
we obtain:

f(N) = 2
N

2
+ 4f(

N

4
) =

= 2
N

2
+ 4(

N

8
+ 2f(

N

8
)) =

= 2
N

2
+

N

2
+ 8f(

N

8
) =

= 3
N

2
+ 8f(

N

8
)

After developing the second term p− 1 times, we obtain:

f(N) = p
N

2
+ 2pf(

N

2p
)

When p = n = lb N , this equation turns into:

f(N) =
N

2
lb N + Nf(1) =

N

2
lb N

Part B
In this part, we develop the details of the approximate so-
lution of the recursive equation defined in Section 3.3.

f(N) =

{
N − 1 if N ≤ K
N
2

+ 2f(N
2

) otherwise

Since the second equation is the same as for the basic tech-
nique, developing the second equation p− 1 times, we again
obtain:

f(N) = p
N

2
+ 2pf(

2n

2p
)

When p = n− k = lb N
K

we get:

f(N) =
N

2
lb

N

K
+

N

K
f(K)

Substituting K−1 for f(K) and factoring out N , we obtain:

f(N) = N(
1

2
lb

N

K
+

K − 1

K
)

Or:

f(N) = N(1− 1

K
+

1

2
lb

N

K
)

Clearly, the term 1
K

can be ignored, giving:

f(N) ≈ N(1 +
1

2
lb

N

K
)

Part C
In this part, we develop the details of the approximate so-
lution of the recursive equation defined in Section 3.3.

f(N) =

{
0 if N = 1
N − N

M
+ Mf(N

M
) otherwise

Solving as before, after developing the last term once, we
obtain:

f(N) = N − N

M
+ Mf(

N

M
) =

= N − N

M
+ M(

N

M
− N

M2
+ Mf(

N

M2
)) =

= N − N

M
+ N − N

M
+ M2f(

N

M2
) =

= 2(N − N

M
) + M2f(

N

M2
)

Developing the last term a second time, we obtain:

f(N) = 2(N − N

M
) + M2f(

N

M2
) =

= 2(N − N

M
) + M2(

N

M2
− N

M3
+ Mf(

N

M3
)) =

= 2(N − N

M
) + N − N

M
+ M3f(

N

M3
) =

= 3(N − N

M
) + M3f(

N

M3
)

After developing the last term p− 1 times, we obtain:

f(N) = p(N − N

M
) + Mpf(

N

Mp
) =

Setting p = n
m

= lb N
lb M

so that Mp = N , we get:

f(N) =
lb N

lb M
(N − N

M
) + Nf(1) =

lb N

lb M
(N − N

M
)

Factoring out N , we obtain:

f(N) = N(1− 1

M
)
lb N

lb M

and thus:

F (N) = N(1 + (1− 1

M
)
lb N

lb M
)

and again:

F (N) ≈ N(1 +
lb N

lb M
)

7. REFERENCES
[1] ISO 80000-2:2009 Quantities and Units – part 2:

Mathematical signs and symbols to be used in the
natural sciences and technology. International
Organization for Standardization, 2009.

[2] R. J. M. Hughes. A novel representation of lists, and its
application to the function ”reverse”. Information
Processing Letters, 22(3):141–144, 1986.

