
Removing redundant tests by replicating control paths

Irène Durand
Robert Strandh

University of Bordeaux
351, Cours de la Libération

Talence, France
irene.durand@u-bordeaux.fr

robert.strandh@u-bordeaux.fr

ABSTRACT
We describe a technique for removing redundant tests in
intermediate code by replicating the control paths between
two identical tests, the second of which is dominated by the
first. The two replicas encode different outcomes of the test,
making it possible to remove the second of the two. Our
technique uses local graph rewriting, making its correctness
easy to prove. We also present a proof that the rewriting
always terminates. This technique can be used to eliminate
multiple tests that occur naturally such as the test for cons-
ness when both car and cdr are applied to the same object,
but we also show how this technique can be used to automat-
ically create specialized versions of general code, for example
in order to create fast specialized versions of sequence func-
tions such as find depending on the type of the sequence
and the values of the keyword arguments supplied.

CCS Concepts
•Theory of computation→Rewrite systems; •Software
and its engineering → Compilers;

Keywords
Intermediate code, compiler optimization, local graph rewrit-
ing

1. INTRODUCTION
In a language such as Common Lisp [1], it is hard to

avoid redundant tests, even if the programmer goes to great
lengths to avoid such redundancies. The reason is that
even the lowest-level operators in Common Lisp require type
checks to determine the exact way to accomplish the oper-
ation, so that two or more calls to similar operators may
introduce redundant tests that are impossible to eliminate
manually.

As an example of such an introduction of redundant tests,
consider the basic list operators car and cdr. We can think

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2017 Copyright held by the owner/author(s).

of these operators to be defined1 in a way similar to the code
below:

(defun car (x)

(cond ((consp x) (cons-car x))

((null x) nil)

(t (error ’type-error ...))))

(defun cdr (x)

(cond ((consp x) (cons-cdr x))

((null x) nil)

(t (error ’type-error ...))))

where cons-car and cons-cdr are operations that assume
that the argument is of type cons. These operations are
implementation defined and not available to the application
programmer.

Now consider some typical2 use of car and cdr such as in
the following code:

(let ((a (car x))

(b (some-function)

(c (cdr x)))

...)

After the inlining of the car and cdr operations, the code
looks like this:

(let ((a (cond ((consp x) (cons-car x))

((null x) nil)

(t (error ’type-error ...)))

(b (some-function)

(c (cond ((consp x) (cons-cdr x))

((null x) nil)

(t (error ’type-error ...)))

...)

We notice that the test for consp occurs twice, and that
the second occurrence is dominated by the first one, i.e.,
every control path leading to the second occurrence must
pass by the first occurrence as well.

1For these particular operators, an implementation may use
some tricks to avoid some of these tests, but such tricks are
not generally usable for other operators. We still prefer to
use car and cdr as examples, because their definitions are
easy to understand.
2In this case, the programmer might use the standard macro
destructuring-bind, but for reasons of simplicity, that
macro will very likely expand to calls to car and cdr, rather
than to some implementation-specific code that avoids the
redundant tests.



start

consp

cons−car null

setq setq error

cons

cons

cons

(not cons)

null

null

(not list)

t

call

setq

consp

null

setq setq error

cons

cons

null

null
(not list)

list

list

cons−cdr

D

I

Figure 1: Control flow generated by a typical com-
piler.

As a consequence, the outcome of the second test for consp
is always the exact same as the outcome of the first one. Un-
fortunately, this fact can not be easily exploited. To see why,
we need to study the intermediate code generated by a typ-
ical compiler as a result of compiling the example program.
The result is shown in Figure 1.

As Figure 1, shows, the intermediate code takes the form
of a control-flow graph in which the nodes are instructions
and the arcs represent the control flow. When we use the
terms predecessor and successor, they refer to the relation-
ship between two instructions in the control-flow graph, as
defined by the control arcs.

In Figure 1, we have omitted references to data so as to
simplify the presentation. In this intermediate representa-
tion, we have also eliminated scoping constructs, so that
liveness of a variable is defined to be between its first as-
signment and its last use. Each control arc is annotated by
a type descriptor, indicating the type of the variable x at
that point in the execution of the program.

After the first let binding has been executed, the control
arc with the type cons and that with the type null both
arrive at the instruction that calls some-function which is
the start of the second let binding. As a consequence, after
the second let binding has been established, the type infor-
mation available for x is (or cons null), which is the same
as list.

In order to avoid the second test for consp, we need to
replicate the instructions corresponding to the establishment
of the second let binding. In this paper, we introduce a
technique for accomplishing this replication using local graph
rewriting. The advantage of this technique is that it is very
simple to implement, and that its semantic soundness is triv-
ial to prove. We also prove that the technique always ter-
minates, no matter how complicated the intermediate com-
putation between the two tests.

2. PREVIOUS WORK
Mueller and Whalley [4] describe a technique for avoid-

ing conditional branches by path replication. Their work
includes heuristics for determining whether such replication

is worthwhile. However, their technique for replicating the
paths is not based on graph rewriting, and they do not sup-
ply a proof that their technique is correct.

3. OUR TECHNIQUE

3.1 General description
Our technique consists of applying local graph rewriting

to the graph of instructions in intermediate code. Local
graph rewriting has the advantage of being simple, both to
implement and when it comes to proving correctness.

For the purpose of this paper, we assume that some ini-
tial phase has determined that the following conditions are
respected:

1. there are two instructions, D and I, in the program
that are identical tests,

2. the variable being tested is the same in D and I,

3. D dominates I, and

4. the variable being tested is not assigned to in any path
from D to I.

In a real compiler, such a phase probably does not exist.
Some conditions are easier to verify if the compiler translates
the intermediate code to SSA form [2, 3], and some condi-
tions can be verified during the execution of our technique,
avoiding the need to include them in a separate phase.

In Figure 1, the two test instructions labeled D and I
respectively verify the conditions listed above, and we will
use these two instructions to illustrate our technique.

During the execution of our algorithm, the instruction I
will be replicated, so that it is part of some set S in which
every replica remains dominated by D. Initially, S contains
I as its only element.

In our technique, we keep track of the outcome of the test
in the control arcs of the control-flow graph. We can think
of this information as being represented as labels associated
with control arcs:

• An arc is unlabeled if we have no information con-
cerning the outcome of the test at that point in the
program.

• An arc is labeled true if the outcome of the test at that
point in the program is known to be true.

• An arc is labeled false if the outcome of the test at
that point in the program is known to be false.

Initially, only the outgoing arcs of D and I have a label.
Our technique involves the repeated application of the first

applicable rewrite rule in the following list to some arbitrary
element of S, say s, that does not itself have an immediate
predecessor in the control-flow graph that is also an element
of S:

1. If s has no predecessors, then remove it from S.

2. If s has an incoming arc labeled true, then change the
head of that arc so that it refers to the successor of s
referred to by the outgoing arc of s labeled true.



start

consp

cons−car

setq

true false

call

setq

consp

null

setq error

falsetrue

setq

null

setq error

cons−cdr

rule 5 applies

Figure 2: Initial instruction graph.

3. If s has an incoming arc labeled false, then change the
head of that arc so that it refers to the successor of s
referred to by the outgoing arc of s labeled false.

4. If s has n > 1 predecessors, then replicate s n times;
once for each predecessor. Every replica is inserted
into S. Labels of outgoing control arcs are preserved
in the replicas.

5. Let p be the (unique) predecessor of s. Remove p as a
predecessor of s so that existing immediate predeces-
sors of p instead become immediate predecessors of s.
Insert a replica of p in each outgoing control arc of s,
preserving the label of each arc.

Rewrite rules are applied until the set S is empty, or un-
til each element of S has an immediate predecessor in the
control-flow graph that is also a member of S. An element of
S could have an immediate predecessor like that if the dom-
inated instruction I were part of a loop. We need to exclude
such elements, or else our technique might not terminate in
all cases.

3.2 A simple example
Let us see how our technique works on the example in

Figure 1. The initial situation is shown in Figure 2. The
instructions that are members of S are drawn with a slightly
thicker box.

As Figure 2 shows, the second consp is dominated by the
first, so it becomes the only member of the set S. The last
rewrite rule applies to the second consp so that the setq is
replicated as its successors. The result of this first rewrite
is shown in Figure 3.

As we can see in Figure 3, the last rewrite rule applies
again resulting in the replication of the call. The result
after the second rewrite is shown in Figure 4.

As we can see in Figure 4, the second consp now has two
predecessors, and both incoming arcs are unlabeled. There-
fore, rewrite rule number 4 applies and the consp is repli-
cated. As a result, S now has two members. The result of
applying this rule is shown in Figure 5.

We now choose the leftmost replica of the second consp

to apply our rules to. It has a single predecessor with an

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

setq setq

true false

cons−cdr

consp
falsetrue

call rule 5 applies

Figure 3: Result after one rewrite.

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

call

setq

consp
true

call

setq

true

true

false

false

cons−cdr

rule 4 applies

false

Figure 4: Result after two rewrites.

start

consp

cons−car

setq

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

true falsetrue false

cons−cdr

consp consp

rule 5

applies

Figure 5: Result after replicating the test.



setq setq

start

consp

cons−car

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetrue

true false

true false

cons−cdr

consp

consp

rule 5 

applies

Figure 6: Result after replicating setq.

setq

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue false

true false

setq

cons−car cons−car

true false

cons−cdr

consp

consp

rule 2

applies

Figure 7: Result after replicating cons-car.

unlabeled incoming control arc, so the last rewrite rule ap-
plies. We replicate the setq in both branches of the test,
giving us the result shown in Figure 6.

In Figure 6, the last rewrite rule applies again, and we
replicate the cons-car, giving us the situation shown in in
Figure 7.

As Figure 7 shows, the consp instruction now has a single
predecessor, but the incoming arc has a known outcome of
the test, namely true. Therefore, rewrite rule number 2
applies. The left outgoing arc of the first consp is redirected
to go directly to the cons-car instruction. The result of
applying this rule is shown in Figure 8.

At this point, the consp that we have been processing
has no predecessor. Therefore we apply rule number 1 and
remove it from S. Removing all instructions that can not be
reached from the start instruction gives the situation shown
in Figure 9.

Analyzing Figure 9, we can see that if the result of the first
consp yields true, then no second test is performed. Instead,
the variable a is set to the result of the instruction cons-car,

setq

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue false

setq

cons−car cons−car

true false

false

cons−cdr

consp

consp

rule 1

applies

Figure 8: Result after short-circuit consp.

start

consp

true false

null

setq error

setq

null

setq error

call

setq

call

setq

true

true

false

false

falsetruetrue

setq

cons−car

true

cons−cdr

consp

rule 5

applies

Figure 9: Result after removing unreachable in-
structions.



call

setq

setq

start

consp

false

null

setq error

setq

call

setq

setq

cons−car

cons−cdr

Figure 10: Final result.

the variable b is set to the result of the call, and the variable
c is set to the result of the instruction cons-cdr. Applying
the same rules to the remaining consp instruction in S and
then to the second null instruction (which is now dominated
by the first), yields the final result shown in Figure 10.

This example represents a control graph that is particu-
larly simple, in that there are no loops between the first and
the second consp instructions. Our technique must obvi-
ously work no matter the complexity of the control graph,
as long as the first test dominates the second.

3.3 Proof of correctness and termination
The correctness of our technique is easy to prove, sim-

ply because each rewrite rule preserves the semantics of the
program. The last rewrite rule preserves the semantics only
under certain circumstances which are easy to verify:

• The predecessor does not assign to a lexical variable
that is read by the test instruction. This condition is
respected because we have assumed that the variable
being tested is not assigned to in any path between
the first and the second occurrences of the test, as
condition number 4 in Section 3.1 requires.

• The predecessor must not have any other side effect
that may alter the outcome of the test. By restrict-
ing the test to lexical variables, this restriction is also
respected.

Termination is a bit harder to prove. One way is to find
some non-negative metric that can be shown to strictly de-
crease as a result of the application of each rewrite rule. We
have not found any such metric. However, this conundrum
can be avoided by a simple grouping of the rewrite rules.
This grouping is not required to be present in the imple-
mentation of our technique, only in the termination proof.

To see how the rewrite rules can be grouped, consider a
general case where the test instruction has some arbitrary
number of labeled or unlabeled incoming control arcs. Rules
number 2 and 3 are first applied a finite number of times.
What happens next depends on the number n of unlabeled
incoming control arcs:

• If n = 0 the first rewrite rule applies, in which case the
instruction is removed from the set S.

• If n = 1, the last rewrite rule is applied. The cru-
cial characteristic of this rewrite rule is that the total
number of unlabeled control arcs decreases by one.

• If n > 1, rewrite rule number 4 is applied. Notice that
the number of unlabeled control arcs is not modified
by the application of this rule.

For the purpose of this proof, we assume that the individ-
ual rewrite steps in a group happen immediately after each
other, so that for a particular instruction, the labeled incom-
ing control arcs are first eliminated, the same instruction is
then potentially replicated, and finally, the last rewrite rule
is applied to one of the replicas. However, the implementa-
tion does not have to work that way in order for termination
to be certain.

In other words, we can create groups of rewrite steps,
where a group can be formed according to one of the follow-
ing group types:

A. A group in this type has a finite number of applications
of rewrite rules number 2 and 3, followed by a single
application of rewrite rule number 1.

B. A group in this type has a finite number of applications
of rewrite rules number 2 and 3, followed by a single
application of rewrite rule number 5.

C. A group in this type has a finite number of applications
of rewrite rules number 2 and 3, followed by a single
application of rewrite rule number 4, followed by a
single application of rewrite rule number 5.

With this information, we can create a metric consisting
of a pair (U,N), where U is the total number of unlabeled
control arcs of the program and N is the number of ele-
ments of the set S. Two pairs can now be compared us-
ing a lexicographic order, so that for two pairs (U1, N1) and
(U2, N2), (U1, N1) is strictly smaller than (U2, N2), written
(U1, N1) < (U2, N2), if and only if either U1 < U2 or U1 = U2

and N1 < N2.

Theorem 1. The rewrite algorithm terminates.

Proof. As a result of a rewrite according to a group of
type A, U remains the same, but N decreases by 1. As a
result of a rewrite according to a group of type B or C, U
decreases by 1 (but N may increase). Since U and N are
both non-negative integers, we must reach a normal form
after a finite number of rewrites.

4. BENEFITS OF OUR TECHNIQUE
The main benefit of our technique is its simplicity. This

simplicity is important both in terms of its implementation
and in terms of ensuring termination for all possible control
graphs.

As the example in Section 3.2 shows, redundant tests can
be avoided in cases where it is not possible to express this re-
dundancy by the use of any portable lower-level constructs.
Situations similar to the one in the example occur naturally
in many programs:



• If the same variable is used in more than one consec-
utive numeric operation, then there will be redundant
tests to determine the exact numeric subtype of the
contents of that variable. An important special case
is to determine whether a particular value is of type
fixnum.

• If a variable holding an array is used in more than
one consecutive operation to access some element, then
there will be redundant tests to determine various as-
pects of the array that influence the way the indices
and the elements are handled, such as the upgraded
element type and whether the array is simple or not.

A particularly interesting special case of these situations
occurs when the dominated test is part of a loop. It is par-
ticularly interesting, because our technique will then elimi-
nate a test that would otherwise potentially be executed a
large number of times. This feature can be taken advan-
tage of in a highly portable version of some of the Common
Lisp sequence functions. By duplicating a very general loop
in every branch of a multiway test for keyword arguments
such as test, test-not, and end, each copy of the loop will
automatically be simplified differently according to the par-
ticular branch it occurs in.

Our technique has some disadvantages as well. First of
all, the size of the code may increase, which can have a
negative influence on cache performance, especially when
different invocations of the code result in different results
of the test. In fact, if several variables with overlapping
regions of liveness are processed by our technique, the result
may be an exponential blowup of the size of the code in the
overlapping region. It is outside the scope of this paper
to discuss heuristics that will determine the conditions for
applying our technique, but such conditions are required to
avoid such problematic effects.

The increase of the size of the code automatically means
longer compilation times as well. Techniques that work
on global information about the program can avoid some
of these disadvantages, at the cost of increased complexity
compared to our simple local rewrite technique.

5. CONCLUSIONS AND FUTURE WORK
We have defined a technique for eliminating redundant

tests in intermediate code. The technique relies on replica-
tion of code paths between two identical tests. So far, our
technique only defines a mechanism for achieving the result.
It does not yet define a policy stating when the technique
should be applied.

The question of policy is an important one, because with
a large number of redundant tests in the intermediate code,
there is a possibility for exponential blowup of the code size.
Future work involves defining a reasonable policy to avoid
such pathological cases.

The technique described in this paper will become avail-
able as one of the optimization techniques provided by the
Cleavir compiler framework that is currently part of the
SICL project.3 Only then will it be possible to determine
the exact characteristics of our technique in terms of appli-
cability, computational cost, performance gain of compiled
code, and size increase of typical programs.

3See https://github.com/robert-strandh/SICL

6. ACKNOWLEDGMENTS
We would like to thank Philipp Marek for providing valu-

able feedback on early versions of this paper.

7. REFERENCES
[1] INCITS 226-1994[S2008] Information Technology,

Programming Language, Common Lisp. American
National Standards Institute, 1994.

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. An efficient method of computing
static single assignment form. In Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89,
pages 25–35, New York, NY, USA, 1989. ACM.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490, Oct.
1991.

[4] F. Mueller and D. B. Whalley. Avoiding conditional
branches by code replication. In Proceedings of the
ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, PLDI ’95, pages
56–66, New York, NY, USA, 1995. ACM.


