
Partial Inlining Using Local Graph Rewriting ∗

Irène Durand
Robert Strandh

University of Bordeaux
351, Cours de la Libération

Talence, France
irene.durand@u-bordeaux.fr

robert.strandh@u-bordeaux.fr

ABSTRACT
Inlining is an important optimization technique in any mod-
ern compiler, though the description of this technique in the
literature is informal and vague. We describe a technique for
inlining, designed to work on a flow graph of instructions of
intermediate code.

Our technique uses local graph rewriting, making the se-
mantic correctness of this technique obvious. In addition,
we prove that the algorithm terminates.

As a direct result of the preservation of the semantics of
the program after each local rewriting step, the algorithm
can stop after any iteration, resulting in a partial inlining
of the called function. Such partial inlining can be advan-
tageous in order to avoid the inlining of code that is not
performance critical, in particular for creating arguments
and calls to error-signaling functions.

CCS Concepts
•Software and its engineering → Abstraction, mod-
eling and modularity; Software performance; Com-
pilers;

Keywords
Common Lisp, Compiler optimization, Portability, Main-
tainability, Graph rewriting

1. INTRODUCTION
Inlining represents an important optimization technique

in any modern compiler. It avoids the overhead of a full
function call, and it allows further optimization in the calling
function in the form of type inference, loop optimizations,
and more.

While the advantages of inlining are well known and well
documented, inlining also entails some disadvantages. It

∗This work was supported by the French National Research
Agency (ANR project GraphEn / ANR-15-CE40-0009).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

11th ELS April 16–17, 2018, Marbella, Spain
c© 2018 Copyright held by the owner/author(s).

increases the size of the code, with a possible negative impact
on processor cache performance. It also increases pressure
on register allocation, possibly making it necessary to spill
registers to the stack more often. Most importantly, though,
as Ayers et al. point out [1, 2], since many optimization
algorithms do not have linear-time complexity in the size of
the code, inlining can have a serious impact on the execution
time of the compiler.

Some authors distinguish between procedure integration
and inline expansion [7]. Both techniques are often referred
to with the abbreviated form inlining. Our use of inlining
corresponds to procedure integration.

Most literature sources define inlining as “replacing a call
to a function with a copy of the body of the called function”
(see e.g., [3, 4, 8]). This definition suggests that inlining is
an all-or-nothing transformation. In this paper, we present
a technique that allows for partial inlining. More precisely,
it allows for a prefix of the callee to be copied into the caller.
We obtain this property by using local graph rewriting at the
level of instructions in intermediate code. A single instruc-
tion is inlined in each step, preserving the overall semantics
of the program, and thereby allowing us to stop the process
at any time.

The traditional definition of inlining is too vague for our
purpose. It suggests that the sole purpose of inlining is to
avoid overhead in the function-call protocol. However, on
modern processors, this overhead is insignificant. For the
purpose of this paper, we would also like to avoid the cre-
ation of a local environment that would normally be nec-
essary for each invocation of the callee. This additional re-
quirement poses additional restrictions as to when inlining
is appropriate.

In this paper, we discuss only the inlining technique it-
self. We do not consider the policy to determine when it is
advantageous to perform the technique, and, although our
technique allows for partial inlining, we also do not consider
the policy of when inlining should stop.

2. PREVIOUS WORK
Before inlining was applied to so-called “structured pro-

gramming languages”, the technique was applied to lan-
guages such as Fortran, that do not allow recursion, and
therefore do not need for subroutines to allocate their own
environments upon entry. And it was then referred to as
“open-coding of subroutines”. Scheifler [8] is probably one
of the first to apply inlining to more modern programming
languages. The language used by Scheifler is CLU [6].

Ayers et al [1] consider the benefit of inlining consisting



of the elimination of the overhead of a procedure call to be
a “side benefit”, and we agree. They cite the main benefit
as the opportunity for more optimizing code transformations
when the code of the called function is exposed in the context
of the calling function.

In their paper, they also mention cloning as an alterna-
tive to inlining, i.e., the duplication and specialization of the
called function according to the context of the calling func-
tion. However, they consider inlining to be strictly superior
to cloning in terms of the possible additional optimizations
made possible, so they recommend cloning only as a means
to avoid too large an increase in the code size, which could
slow down subsequent non-linear optimizations. Cloning,
and especially the specialization of the cloned code in the
context of the caller, is one technique used in partial eval-
uation [5]. Inlining, however, whether total or partial, is
not a technique of partial evaluation. Inlining may of course
enable such techniques by exposing the code of the called
function in the context of the caller.

Most existing work is concerned with determining when
inlining is to be performed, based on some analysis of the
benefits as compared to the penalties in terms of increased
compilation time in subsequent optimization passes. The
inlining technique itself is considered trivial, or in the words
of Chang and Hwu ([4, 3]) “The work required to duplicate
the callee is trivial”. Inlining might be trivial in the context
of purely function programming, in that it suffices to replace
occurrences of local variables in the called function by the
argument expressions in the function call. However, for a
language such as Common Lisp that allows for assignments
to lexical variables, inlining can be non-trivial. Consider the
following example:

(defun f (x y) (setq x y))

(defun g (a) (f a 3) a)

If simple renaming is applied, we obtain the following code
which does not preserve the semantics of the original code:

(defun g (a) (setq a 3) a)

The use of continuation-passing style for compiling Common
Lisp programs often requires a priori elimination of side ef-
fects by confiding these side effects to updates on cells. Such
a conversion transforms the program so that it respects a
purely functional style, making inlining trivial as indicated
above. However, such a conversion has a significant impact
on program performance, especially in the context of modern
processors, where memory access are orders of magnitude
more expensive than register operations.

Because of issues such as this one, this paper discusses
only a technique for inlining in the context of arbitrary Com-
mon Lisp code that might contain such side effects. It does
not discuss the more complex issue of determining a strategy
for when inlining should or should not be applied.

Although the paper by Ayers et al explains that their
technique is applied to intermediate code, just like the tech-
nique that we present in this paper, their paper contains
little information about the details of their technique.

3. OUR TECHNIQUE
The work described in this paper is part of the Cleavir

compiler framework. Cleavir is currently part of the SICL

project1, but we may turn it into an independent project in
the future.

In our compiler, source code is first converted to an ab-
stract syntax tree. In such a tree, lexical variables and lex-
ical function names have been converted to unique objects.
When a globally defined function F is inlined into another
function G, we incorporate the abstract syntax tree of F
as if it were a local function in G. No alpha renaming is
required. Notice that this step in itself does not count as
inlining. The function F is still invoked using the normal
function-call protocol at this stage.

In the second phase, the abstract syntax tree is translated
to intermediate code in the form of a flow graph of instruc-
tions. Our inlining technique is designed to work on this
intermediate representation.

There are several advantages of using this intermediate
representation over higher-level ones such as source code or
abstract syntax trees, as we will show in greater detail below,
namely:

• Each iteration of the algorithm defined by our tech-
nique is very simple, and we can be shown to preserve
the semantics of the program.

• Because each iteration preserves the semantics, the
process can be interrupted at any point in time, re-
sulting in a partial inlining of the called function.

Furthermore, this intermediate code representation is sim-
ilar to the one used in many traditional compiler optimiza-
tion techniques, making it possible to reuse code for similar
transformations.

One potential drawback of this representation is that op-
erations on programs represented this way are inherently
imperative, i.e. they modify the structure of the flow graph.
The use of techniques from functional programming is there-
fore difficult or impractical with this representation. More-
over, the flow graph resulting from some arbitrary number
of iterations of our technique does not necessarily have any
correspondence as Common Lisp source code.

3.1 Intermediate code
The intermediate code on which our technique is designed

to work is called High-level Intermediate Representation, or
HIR for short. This representation takes the form of a flow
graph of instructions as used by many traditional compiler
optimization techniques. The main difference between HIR
and the intermediate representation used in compilers for
lower-level languages is that in HIR, the only data objects
that the instructions manipulate are Common Lisp objects.
Arbitrary computations on addresses are exposed in a later
stage called Medium-level Intermediate Representation, or
MIR.

Most HIR instructions correspond directly to Common
Lisp operators such as the ones in the categories described
below. Notice that, although the names of the instructions
often resemble the names of Common Lisp operators, the
instruction typically requires more precise objects than the
corresponding Common Lisp operator does. Thus, the car

instruction requires the argument to be a cons object, and
the funcall instruction requires its first argument to be a
function. The following such categories exist:

1https://github.com/robert-strandh/SICL



• Low-level accessors such as car, cdr, rplaca, rplacd,
aref, aset, slot-read, and slot-write.

• Instructions for low-level arithmetic on, and compari-
son of, floating-point numbers and fixnums.

• Instructions for testing the type of an object.

• Instructions such as funcall, return, and unwind for
handling function calls and returns.

Two of the HIR instructions are special in that they do
not have direct corresponding Common Lisp operators, and
in that they are essential to the inlining machinery described
in this paper:

• The enter instruction. This instruction is the first
one to be executed in a function, and it is responsible
for creating the initial local lexical environment of the
function from the arguments given by the calling func-
tion. This initial environment is typically augmented
by temporary lexical variables during the execution of
the function. Variables may also be eliminated from
the local environment when they are no longer acces-
sible by any execution path.

• The enclose instruction. This instruction takes the
code of a nested function (represented by its enter

instruction) and creates a callable function that may
be a closure.

3.2 Algorithm
The algorithm that implements our technique maintains

a worklist. An item2 of the worklist contains:

• A funcall instruction, representing the call site in the
calling function.

• An enter instruction, representing the called function.

• The successor instruction of the enter instruction, called
the target instruction, or target for short. The target
instruction is the one that is a candidate for inlining,
and it is used for generic dispatch.

• A mapping from lexical variables in the called func-
tion that have already been duplicated in the calling
function.

In addition to the contents of the worklist items, our algo-
rithm maintains the following global information, indepen-
dent of any worklist item:

• A mapping from instructions in the called function
that have already been inlined, to the corresponding
instructions in the calling function. This information
prevents an instruction from being inlined more than
once. Without this information, and in the presence
of loops in the called function, our inlining algorithm
would go into an infinite computation.

2In the code, an item also contains an enclose instruction,
but we omit this instruction from our description, in order
to simplify it.

• Information about the ownership of lexical variables
referred to by the called function. This ownership in-
formation indicates whether a lexical variable is cre-
ated by the called function itself, or by some enclosing
function. When an instruction to be inlined refers to a
variable that is created by some enclosing function, the
reference is maintained without modification. When
the reference is to a variable created by the function
itself, the inlined instruction must refer to the corre-
sponding variable in the calling function instead.

Prior to algorithm execution, assignment instructions are
inserted before the funcall instruction, copying each argu-
ment to a temporary lexical variable. These lexical variables
represent a copy of the initial environment of the called func-
tion, but allocated in the calling function. The pair consist-
ing of the funcall and the enter instruction can be seen
as transferring this environment from the calling function to
the called function. The variable correspondences form the
initial lexical variable mapping to be used in the algorithm.

Initially, the worklist contains a single worklist item with
the following contents:

• The funcall instruction representing the call that should
be inlined.

• A private copy of the initial enter instruction of the
function to inline.

• The successor instruction of the initial enter instruc-
tion, which is the initial target.

• The initial lexical variable mapping described previ-
ously.

In each iteration of the algorithm, a worklist item is re-
moved from the worklist, and a generic function is called
with four arguments, representing the contents of the work-
list item. Each iteration may result in zero, one, or two new
worklist items, according to the mappings and ownership in-
formation, and according to the number of successors of the
target instruction in this contents.

When the generic function is called in each iteration, one
of the following four rules applies. As we show in Section 3.4,
each of the following rules preserves the overall operational
semantics of the code:

1. If the target instruction has already been inlined, i.e.
it is in the mapping containing this information as de-
scribed previously, then replace the funcall instruc-
tion by the inlined version of the target. There are
two ways of doing this replacement. Either the pre-
decessors of the funcall instruction are redirected to
the inlined version of the target instruction, effectively
making the funcall instruction unreachable, or else,
the funcall instruction is replaced by a no-operation

instruction with the inlined version of the target in-
struction as its successor. When this rule applies, no
new item is added to the worklist.

2. If the target instruction is a return instruction, then
replace the funcall instruction by one or more as-
signment instructions mapping inputs of the funcall

instruction to outputs of that same instruction. Again,
in this case, no new item is added to the worklist.



3. If the target instruction has a single successor, insert
a copy of the next instruction before the funcall in-
struction, and make the enter instruction refer to that
successor. Update the mappings, the inputs of the
funcall instruction, and the outputs of the enter in-
struction as described below. In this case, the funcall

instruction, the enter instruction, the new successor of
the enter instruction, and the updated lexical variable
mapping are inserted as a new item on the worklist for
later processing.

4. If the target instruction has two successors, insert a
copy of the target instruction before the funcall in-
struction, and replicate the funcall instruction in each
branch. Also replicate the enter instruction so that
each replica refers to a different successor of the orig-
inal instruction. Update the mappings, the inputs of
the funcall instruction, and the outputs of the enter

instruction as described below. In this case, two new
items are inserted on the worklist for later processing.
Each item contains a funcall instruction, an enter in-
struction, the successor of the enter instruction, and
a lexical variable mapping, corresponding to each suc-
cessor branch of the inlined instruction.

For rules 3 and 4, when a new instruction is inlined, the
mappings, the inputs to the funcall instruction, and the
outputs of the enter instruction are updated as follows:

• An entry is created in the mapping from instructions in
the called function to instructions in the calling func-
tion, containing the inlined instruction and its copy in
the calling function.

• If some input i to the inlined instruction is present in
the lexical variable mapping (mapping to (say) ii in
the calling function) and in the outputs of the enter

instruction, but i is no longer live after the inlined
instruction, then the entry ii - i is eliminated from
the mapping, i is eliminated from the outputs of the
enter instruction, and ii is eliminated from the inputs
to the funcall instruction. It would be semantically
harmless to leave it intact, but it might harm perfor-
mance if the inlining procedure is stopped when it is
still partial. Notice that, when an instruction with two
successors is inlined, variable liveness may be different
in the two successor branches.

• If some output o of the inlined instruction is a new
variable that is created by that instruction, then we
proceed as follows. Let I be the instruction in the
called function that has been inlined, and let II be
the copy of I in the calling function. We create a new
variable oo in the calling function that takes the place
of o in II. We add oo as an input to the funcall

instruction, o as an output of the enter instruction,
and we add oo - o to the lexical variable mapping.
Again, if the inlined instruction has two successors,
the lexical variable mapping may have to be updated
for one or the other or both of the successors.

3.3 Example
As an example of our technique, consider the initial in-

struction graph in Figure 1. On the left is the calling func-
tion. It has three lexical variables, namely x, a, and y. The

enter

return

z

w

1

2

x a

funcall

y

Figure 1: Initial instruction graph.

enter

worklist

funcallA enterA 1 zz − z

x a

y

zz

funcallA

return

z

w

1

2

enterA

Figure 2: Instruction graph after initialization.

variable a is referenced by the called function, but it is owned
by the calling function. The called function has a single vari-
able named z in its initial lexical environment. A temporary
variable w is created as a result of the execution of one of
the instructions in the called function.

Before the inlining procedure is started, we create tempo-
rary variables in the calling function for the variables in the
initial environment of the called function. We also create
a private copy of the enter instruction so that we can mu-
tate it during the inlining procedure. The result is shown in
Figure 2.

As we can see in Figure 2, an assignment instruction has
been created that copies the value of the lexical variable x

into a variable zz that mirrors the initial lexical variable z

in the called function. We also see that there are now two
identical enter instructions. The one labeled enterA is the
private copy.

Step one of the inlining procedure consists of inlining the
successor of our private enter instruction, i.e. the instruc-



enter

1

worklist

ww − w

zz − z
2enterAfuncallA

x a

y

zz

funcallA

return

z

w2

enterA

1

ww

Figure 3: Instruction graph after one inlining step.

tion labeled 1 in Figure 2. That instruction has a single
successor, and it has not yet been inlined. Therefore, rule
3 applies, so we insert a copy of that instruction before the
funcall instruction. Furthermore, since the input to the
original instruction is the lexical variable z, and that vari-
able is mapped to zz in the calling function, the inlined
instruction receives zz as its input. The output of the orig-
inal instruction is the temporary variable w that is not in
our lexical variable mapping. Therefore, a temporary vari-
able ww is created in the calling function, and an entry is
created in the mapping that translates w to ww. The private
enter instruction (labeled enterA) is modified so that it now
refers to the next instruction to be considered as a target.
The result of this step is shown in Figure 3.

In step two of the inlining procedure, we are considering
inlining an instruction with two successors, i.e. the one la-
beled 2 in Figure 3. It has not yet been inlined, so rule
number 4 applies. As rule number 4 stipulates, we must
replicate both the enter instruction and the funcall in-
struction. The result is shown in Figure 4.

In Figure 4, the funcall instruction labeled funcallA is
paired with the enter instruction labeled enterA and the
funcall instruction labeled funcallB is paired with the
enter instruction labeled enterB.

In step three of the inlining procedure, we consider the
funcall instruction labeled funcallB. The corresponding
enter instruction has a return instruction as its successor,
so rule number 2 applies. We must therefore replace the
funcall instruction by an assignment instruction, assigning
the value of the variable ww to the variable y. The result of
this operation is shown in Figure 5.

In step four of the inlining procedure, we consider the
funcall instruction labeled funcallA in Figure 5 and the
corresponding enter instruction. The successor of the enter
instruction is the instruction labeled 1, and that instruc-
tion has already been inlined, so rule number 1 applies. We
therefore remove the funcall and redirect its predecessors
to the inlined version of the instruction labeled 1. The re-
sult is shown in Figure 6, and that completes the inlining
procedure.

enter

1

funcallA

x a

y

zz

return

z

w2

1

ww2

enterA

funcallB

enterB

worklist

funcallA enterA 1
zz − z

ww − w

ww − wfuncallB enterB return

Figure 4: Instruction graph after two inlining steps.

enter

1

funcallA

x a

y

zz

return

z

w2

1

ww2

enterA

worklist

funcallA enterA 1
zz − z

ww − w

Figure 5: Instruction graph after three inlining
steps.



enter

1

x a

y

zz

return

z

w2

1

ww2

Figure 6: Instruction graph after four inlining steps.

enter

1

x a

y

zz

return

z

w2

1

ww2

Figure 7: Final instruction graph.

After some minor reorganization of the instructions in Fig-
ure 6, we obtain the final result shown in Figure 7. Clearly
we have an inlined version of the called function now repli-
cated in the calling function.

3.4 Correctness of our technique
In order to prove total correctness of our technique, we

must show that two conditions hold:

1. Partial correctness, i.e. the technique must preserve
the semantics of the program.

2. Termination.

3.4.1 Partial correctness
Our technique preserves a very strong version of the se-

mantics of the program, namely the operational semantics.
This fact makes it unnecessary to create a precise definition
of the program semantics, as might have been the case for
some weaker type of semantics. Instead, we only need to
show that the exact same operations are performed before
and after each inlining step.

After a copy of the initial environment of the called func-
tion has been made in the environment of the calling func-
tion, we can see a pair of funcall/enter instructions as
defining a morphism σ, mapping the copy of this environ-
ment in the calling function to its original version in the
called function. The inputs of the funcall instruction are
mapped to the outputs of the enter instruction. The lexical
variable mapping used in our technique is simply the inverse,
i.e σ−1 of this morphism. Similarly, a pair of return/funcall
instructions can be seen as defining a morphism τ , mapping
the environment in the called function to the environment
in the calling function. The inputs of the return instruc-
tion are mapped to the outputs of the funcall instruction.
These morphisms are illustrated in an example of an initial
situation in Figure 8.

Applying rule 3 or rule 4 copies one instruction from the
called function to the calling function, applying the mor-
phism σ−1 to its inputs and outputs. Two applications of
rule 3 from the initial situation are illustrated in Figure 9
and Figure 10. Applying rule 4 is a bit more involved, but
the same mechanism is used. As we can see from these fig-
ures, thanks to the morphism, the instructions operate the
same way whether inlined or not. The semantics are thus
the same in both cases.

When rule 2 is applied, the return instruction is not
copied. Instead, a number of assignment instructions are
created in the calling function. Together, these assignment
instructions define the composition of the two morphisms τ
and σ, i.e. τ ◦ σ. Applying this rule therefore does not alter
the semantics of the program. It merely maps the returned
values to their copies in the calling function. Applying this
rule is illustrated in Figure 11.

Finally, applying rule 1 merely avoids the control transfer
from the calling function to the called function, by replacing
the funcall instruction by an existing copy of the instruc-
tion that would have been inlined by rule 3 or rule 4. The
existing copy obviously already operates in the environment
of the calling function.

3.4.2 Termination
In order to prove termination, we invent a metric with the

following properties:

• It has a lower bound on its value.

• Its value decreases with each iteration of our inlining
procedure.

The metric we have chosen for this purpose is called re-
maining work, and it is represented as a pair r = (I, F )
where I is the number of instructions that have yet to be in-
lined, and F is the number of funcall instructions that have
yet to be processed as part of the worklist items. Clearly, it
has a lower bound on its value, namely rmin = (0, 0).

Initially, the remaining work has the value r0 = (N, 1)
where N is the number of instructions in the called function.
We consider the metric to be lexicographically ordered by
its components, i.e. (I1, F1) < (I2, F2) if and only if either
I1 < I2 or I1 = I2 and F1 < F2. We show that each step
yields a value that is strictly smaller than before the step.

Consider some iteration k of our inlining procedure, so
that rk = (Ik, Fk) is the remaining work before the iteration,
and rk+1 = (Ik+1, Fk+1) is the remaining work after the
iteration.



i1

i2

return

σ

τ

Figure 8: Initial situation.

σ−1(i1) i1

i2

return

σ

τ

Figure 9: Situation after one application of rule 3.

• If rule number 1 applies, then one funcall instruction
is eliminated in the iteration, so that Ik+1 = Ik and
Fk+1 = Fk − 1. Clearly, rk+1 < rk in this case.

• If rule number 2 applies, then again one funcall in-
struction is eliminated in the iteration, so that Ik+1 =
Ik and Fk+1 = Fk − 1. Again, rk+1 < rk.

• If rule number 3 applies, then another instruction is in-
lined, but the number of funcall instructions remains
the same, so that Ik+1 = Ik−1 and Fk+1 = Fk. Again,
rk+1 < rk.

• Finally, if rule number 4 applies, then another instruc-
tion is inlined, but the number of funcall instructions
increases by 1, so that Ik+1 = Ik−1 and Fk+1 = Fk+1.
Again, rk+1 < rk.

4. CONCLUSIONS AND FUTURE WORK
We have presented a technique for inlining local functions

that uses local graph rewriting techniques. We have proved
our technique to be correct in that it preserves the semantics
of the original program, and it is guaranteed to terminate.

Although our iterative technique can be stopped at any
point, thus giving us partial inlining, there are some prac-
tical aspects of such partial inlining that still need to be
investigated:

• When the inlining is not complete, the called function
has multiple entry points. Many optimization tech-
niques described in the literature assume that a func-
tion has a single entry point. We plan to investigate

σ−1(i1) i1

σ−1(i2) i2

return

σ

τ

Figure 10: Situation after two applications of rule 3.

σ−1(i1) i1

σ−1(i2) i2

τ ◦ σ return

Figure 11: Situation after an applications of rule 2.

the consequences of such multiple entry points on the
optimization techniques that we have already imple-
mented, as well as on any optimization techniques that
we plan to incorporate in the future.

• In our intermediate code, we treat multiple values with
an unknown number of values as a special type of da-
tum. It is special in that it must store an arbitrary
number (unknown at compile time) of values. During
the execution of our inlining procedure, such a datum
may become part of the mapping between variables of
the called function and the calling function. When the
inlining procedure continues until termination, such a
datum will be handled in the calling function in the
same way that it is handled in the called function.
However, if the inlining procedure is stopped with such
a datum in the mapping, we would somehow need
to transmit it as an argument to the called function.
Doing so may require costly allocation of temporary
memory and costly tests for the number of values that
would not be required when the procedure continues
until termination. However, it is rare that code needs
to store intermediate multiple values. It only happens
in a few cases such as when multiple-value-prog1

is used. Therefore, one solution to this problem is to
avoid inlining in this case. Another possible solution is
to let the inlining procedure continue until termination
for these cases.

As presented in this paper, our technique handles only
functions with very simple lambda lists. It is probably not
worth the effort to attempt to inline functions with lambda



lists containing keyword arguments, but it might be useful
to be able to handle optional arguments. We intend to gen-
eralize our technique to such lambda lists.

We have implemented the technique described in this pa-
per, but have yet to implement a decision procedure for de-
termining whether this technique could and should be ap-
plied. The details of this decision procedure are currently
being investigated.

5. ACKNOWLEDGMENTS
We would like to thank Bart Botta, Jan Moringen, John

Mercouris, and Alastair Bridgewater for providing valuable
feedback on early versions of this paper.

6. REFERENCES
[1] A. Ayers, R. Schooler, and R. Gottlieb. Aggressive

inlining. In Proceedings of the ACM SIGPLAN 1997
Conference on Programming Language Design and
Implementation, PLDI ’97, pages 134–145, New York,
NY, USA, 1997. ACM.

[2] A. Ayers, R. Schooler, and R. Gottlieb. Aggressive
inlining. SIGPLAN Not., 32(5):134–145, May 1997.

[3] P. P. Chang and W.-W. Hwu. Inline function expansion
for compiling c programs. SIGPLAN Not.,
24(7):246–257, June 1989.

[4] P. P. Chang and W.-W. Hwu. Inline function expansion
for compiling c programs. In Proceedings of the ACM
SIGPLAN 1989 Conference on Programming Language
Design and Implementation, PLDI ’89, pages 246–257,
New York, NY, USA, 1989. ACM.

[5] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[6] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert.
Abstraction Mechanisms in CLU. Commun. ACM,
20(8):564–576, Aug. 1977.

[7] S. S. Muchnick. Advanced compiler design and
implementation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

[8] R. W. Scheifler. An analysis of inline substitution for a
structured programming language. Commun. ACM,
20(9):647–654, Sept. 1977.


