A modern implementation of the LOOP macro

Robert Strandh
University of Bordeaux
351, Cours de la Libération
Talence, France
robert.strandh@u-bordeaux1.fr

ABSTRACT

Most Common Lisp implementations seem to use a deriva-
tive of MIT loop. This implementation predates the Com-
mon Lisp standard, which means that it does not use some of
the features of Common Lisp that were not part of the lan-
guage before 1994. As a consequence, the loop implementa-
tion in all major Common Lisp implementation is monolithic
and therefore hard to maintain and extend.

Furthermore, MIT loop is not a conforming loop imple-
mentation, in that it produces the wrong result for certain
inputs. In addition, MIT loop accepts sequences of loop
clauses with undefined behavior according to the standard,
though whether such extended behavior is a problem is de-
batable.

We describe a modern implementation of the Common
Lisp loop macro. This implementation is part of the SICL
project. To make this implementation of the macro modular,
maintainable, and extensible, we use combinator parsing to
recognize loop clauses, and we use CLOS generic functions
for code generation.

CCS Concepts

eSoftware and its engineering — Control structures;

Keywords
CLOS, Common Lisp, Iteration, Combinator parsing

1. INTRODUCTION

The loop macro is part of the Common Lisp standard,
so every conforming Common Lisp implementation contains
an implementation of this macro.

This macro is frequently criticized as un-Lispy since it
does not use S-expressions for its clauses, and for being im-
possible to extend, at least by using only features available
in the Common Lisp standard. In addition, advocates of
purely-functional programming also criticize it, along with

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

(© 2016 Copyright held by the owner/author(s).

all other iteration constructs that can not be explained in
terms of recursion.

Despite all this criticism, the loop macro is an essential
and widely used part of any non-trivial Common Lisp pro-
gram. It is able to satisfy the vast majority of iteration
needs. In addition, it is far easier to understand than equiv-
alent loops using other iteration constructs such as dotimes,
dolist, and do.

Most current implementations of Common Lisp seem to
use an implementation of the loop macro that was largely
written before the Common Lisp standard was adopted.
Consequently, some of the interesting features of the stan-
dardized Common Lisp language are not used in the im-
plementation of the loop macro in these implementations.
In particular, the use of generic functions is typically mini-
mal. As a result, the implementation of this macro is quite
monolithic, making it hard to maintain, whether in order to
remove defects or to extend it.

We present a modern implementation of the loop macro.
This implementation was written as part of the SICL! project,
of which one of the explicit goals is to use improved coding
techniques.

We are able to obtain a more modular loop implementa-
tion by using two key techniques. The first one is to parse the
clauses using a parsing technique that allows for individual
clause parsers to be textually separated according to clause
type. The second modularity technique is to use generic
functions for semantic analysis and code generation. By
defining clause types as standard classes, we are able to tex-
tually separate processing according to clause type through
the use of methods specialized to these clause classes.

2. PREVIOUS WORK

2.1 MIT 100p with variations

One of the first implementations of the Common Lisp loop
macro is the one that is often referred to as “MIT loop”
[1]. A popular variation of this implementation includes
modifications by Symbolics Inc.

This implementation of the loop macro is sometimes more
permissive than the Common Lisp standard. For example,
the standard requires all variable clauses to precede all main
clauses. Code such as the one in this example:

(loop until (> i 20)
for i from O
do (print i))

!See https://github.com/robert-strandh/SICL




is thus not conforming according to the standard, since until
is a main clause whereas for is a variable clause.

However, MIT loop and its variation accepts the code in
the example.

Another example of non-conforming behavior is illustrated
by the following code:

(loop for i from O below 10
sum i
finally (print i))

The Common Lisp standard clearly states that the loop
variable does not take on the value of the upper limit, here
10, so the value printed in the finally clause should be
9. However, loop implementations derived from MIT loop
print 10 instead.

Notice that the two examples above are non-conforming
in two different ways, as explained in section 1.5 of the Com-
mon Lisp standard.

In the first case, we have an example of a non-conforming
program as explained in section 1.5.2 for the simple reason
that the standard does not specify what an implementation
must do when the clause order is violated. By default, then,
the behavior is said to be undefined, meaning that the im-
plementation is free to reject the non-conforming program
or to accept it and interpret it in some (perhaps unexpected)
way. The MIT loop implementation is therefore conforming
in this respect.

In the second case, we have an example of a non-conforming
implementation as explained in section 1.5.1. The reason is
that the standard clearly stipulates that every implementa-
tion must print 9, whereas MIT loop prints 10.

The MIT loop implementation is monolithic and that
holds true for its variations too. The code is contained in a
single file with around 2000 lines of code in it.

Code generation uses a significant number of special vari-
ables holding various pieces of information that are ulti-
mately assembled into the final expansion of the macro.

2.2 ECL and Clasp

ECL? includes two implementations of the loop macro,
namely the initial MIT loop with only minor modifications,
and the variation by Symbolics Inc also with minor modifi-
cations.

Clasp® is a recent implementation of Common Lisp. It
is derived from ECL in that the C code of ECL has been
translated to C++ whereas most of the Common Lisp code
has been included with no modification, including the code
for the loop macro.

ECL loop being derived from MIT loop, the non-conforming

example shown in Section 2.1 is also accepted by ECL and
Clasp.

2.3 SBCL

SBCL* includes an implementation of the 1oop macro that
was originally derived from MIT loop, but that also includes
code from the loop macro of the Genera operating system.
Furthermore, the SBCL implementation of the loop macro

2ECL stands for “Embedded Common Lisp.

See: //https://gitlab.com/embeddable-common-lisp/ecl
3See: https://github.com/drmeister/clasp

4SBCL stands for Steel-Bank Common Lisp.

See: http://www.sbcl.org/

has been modified and improved to allow for user-definable
extensions, such as the extension defined in [3] for iterating
over user-definable sequences.

SBCL loop being derived from MIT loop, the non-conforming

example shown in Section 2.1 is also accepted by SBCL.

24 CLISP

CLISP has its own implementation of the loop macro.
The bulk of the implementation can be found in a function
named expand-loop. This function consists of more than
900 lines of code.

25 CCL

Like many other implementations, CCL® includes the vari-
ation of MIT loop containing modifications by Symbolics
Inc.

2.6 LispWorks

Evaluating the two examples in Section 2.1 on Lisp Works®
gives the same result as the implementations using MIT
loop, suggesting that LispWorks also uses a derivative of
that loop implementation.

3. OUR TECHNIQUE

3.1 Parsing clauses

In order to parse loop clauses, we use a simplified version
of a parsing technique known as combinator parsing [4].

With this parsing technique, client code defines elemen-
tary parsers that are then combined using combinators such
as alternative and sequence. The resulting parser code is
modular in that individual parsers do not have to be listed
in one single place. For the loop clauses, this modularity
means that each type of clause can be defined in a different
module.

In our parsing framework, an individual parser is an or-
dinary Common Lisp function that takes a list of Common
Lisp expressions and that returns three values:

7

1. A generalized Boolean indicating whether the parse
succeeded.

2. The result of the parse. If the parse does not succeed,
then this value is unspecified.

3. A list of the tokens that remain after the parse. If
the parse does not succeed, then this list contains the
original list of tokens passed as an argument.

Consider the following example:

(define-parser arithmetic-up-1-parser
(consecutive
(lambda (var type-spec from to by)
(make-instance ’for-as-arithmetic-up
:order ’(from to by)
:var-spec var
:type-spec type-spec
:start-form from
:end-form (cdr to)

SCCL stands for Clozure Common Lisp.

See: http://ccl.clozure.com/

5See: http://www.lispworks.com/

"It is simplified because we do not need the full backtracking
power of combinator parsing.



:by-form by
:termination-test (car to)))
’simple-var-parser
’optional-type-spec-parser
(alternative ’from-parser
>upfrom-parser)
(alternative ’to-parser
’upto-parser
’below-parser)
’by-parser))

The macro define-parser defines a named parser. This
parser consists of four consecutive parsers:

1. A parser that recognizes a simple variable. The result
of this parser is the variable.

2. A parser that recognizes an optional type specifier.
The result of this parser is the type specifier or t if
the type specifier is absent.

3. A parser that recognizes one of the loop keywords from
or upfrom followed by a form. The result of the parser
is the form.

4. A parser that recognizes one of the loop keywords to,
upto, or below followed by a form. The result of this
parser is a cons, where the car is either the symbol <
or the symbol <= depending on which keyword was
recognized, and the cdr is the form.

The function defined by the lambda expression combines
the results of those four parsers into a single result for the
newly defined parser. In this example, the result of the new
parser is an instance of the class for-as-arithmetic-up.

Initially, the loop body is parsed as a sequence of indi-
vidual loop clauses, without any consideration for the order
between those clauses. A failure to parse during this phase
will manifest itself as an error relating to a particular clause,
whether it is in a valid position or not. Furthermore, ignor-
ing restrictions on clause ordering allows us to check the
syntax of each clause. If order had been taken into account,
we would either have to abandon the parsing phase when
a syntactically correct clause were found in the wrong posi-
tion and thereby being unable to verify subsequent clauses,
or else we would have to implement some sophisticated er-
ror recovery, allowing the parsing process to continue after
a failure.

3.2 Representing parsed clauses

The result of the initial parsing process is a list of clauses,
where each clause has been turned into a standard instance.®

The classes representing different clause are organized into
a graph that that mostly mirrors the names and descriptions
of different clause types defined by the Common Lisp stan-
dard.

So for example, the class named main-clause is the root
class of all clauses of that type mentioned in the standard.
The same is true for variable-clause, name-clause, etc.

Classes representing clauses that admit the loop keyword
and also have a list of sub-clauses.

8We avoid using language such as “an instance of a CLOS
class” since all classes are CLOS classes and therefore all
Common Lisp objects are instances of CLOS classes. A
“standard instance” representing a loop clause is created by
calling make-instance on a class defined by defclass.

This organization allows us to capture commonalities be-
tween different clause types by defining methods on generic
functions that are specialized to the appropriate class in this
graph.

In addition to representing each clause as a standard in-
stance, we also represent the loop body itself as an instance
of the class named loop-body. This instance contains a list
of all the clauses, but also other information, in particular
about default accumulation for this call to the loop macro.

3.3 Semantic analysis

We use generic functions to analyze the contents of the
parsed clauses, and to generate code from them. The reason
for using generic functions is again one of modularity. A
method specialized to a particular clause type, represented
by a particular standard class, can be textually close to other
code related that clause type.

Checking the validity of the order between clauses is done
in the first step of the semantic analysis, allowing us to signal
pertinent error conditions if the restrictions concerning the
order of clauses are not respected.

Next, we verify that the variables introduced by a clause
are unique when it would not make sense to have multiple
occurrences of the same variable. We also verify that there
is at most one default accumulation category, i.e, one of the
categories list, min/max, and count/sum.

3.4 Code generation

The main control structure for code generation consists of
two steps:

e First, the loop prologue, the loop body, and the loop
epilogue are constructed in the form of a tagbody spe-
cial form.

e To the resulting tagbody form is then applied a set
of nested wrappers, one for each clause. A wrapper
for a clause typically contains let bindings required
for the clause, but also iterator forms where such it-
erators are required by the clause type, for example
with-package-iterator.

The loop body consists of three consecutive parts:

1. The main body, containing code for the do clause and
the accumulation clauses.

2. The termination-test part, containing code that checks
whether iteration should terminate.

3. The stepping part, containing code that updates iter-
ation variables in preparation for the next iteration.

The essence of code generation is handled by a number of
generic functions, each extracting different information from
a clause:

e accumulation-variables extracts the accumulation vari-
ables of a clause, indicating also whether the loop key-
word into is present.

e declarations extracts any declarations that result from
the clause.

e prologue-form returns a form that should go in the
loop prologue, or nil if no prologue form is required
for the clause.



e epilogue-form returns a form that should go in the
loop epilogue, or nil if no epilogue form is required
for the clause.

e termination-form returns a form that should become
a termination test, or nil if the clause does not result
in a termination test.

e step-form returns a form that should be included in
the stepping part of the loop body, for those clause
types that define stepping. This generic function re-
turns nil if the clause does not have any step forms
associated with it.

e body-form returns a form that should be present in
the main body of the expansion, or nil if the clause
does not result in any form for the body.

The generic function prologue-form takes a clause argu-
ment and returns a form that should go in the loop pro-
logue. The initially clause is an obvious candidate for
such code. But the stepping clauses also have code that
goes in the prologue, namely an initial termination test to
determine whether any iterations at all should be executed.

Of the clause types defined by the Common Lisp standard,
only the finally clause has a method that returns a value
other than nil on the generic function epilogue-form.

The generic function termination-form takes a clause ar-
gument and returns a form for that clause that should go in
the termination-test part of the body of the expanded code.
Some of the for/as clauses and also the repeat clause have
specialized methods on this generic function.

The generic function step-form returns takes a clause ar-
gument and returns a form for that clause that should go in
the stepping part of the body of the expanded code. The
for/as clauses and also the repeat clause have specialized
methods on this generic function.

The generic function body-form returns takes a clause ar-
gument and returns a form for that clause that should go in
the main body of the expanded code. The do and the ac-
cumulation clauses have specialized methods on this generic
function.

3.5 Tests

Our code has been thoroughly tested. The code for testing
contains almost 5000 lines. This code has been taken from
the Paul Dietz’ ANSI test suite® and adapted to our needs.
In particular, we had to remove some tests that did not
conform to the standard, and we added tests where the test
suite omitted to test potentially non-conforming behavior.

4. BENEFITS OF OUR METHOD

As already mentioned in Section 3.1, the main advantage
of our technique is that it allows for a modular structure of
the loop implementation.

The most immediate consequence of this improved modu-
larity is that the code is easier to maintain than a monolithic
code for the same purpose. There is less code that a main-
tainer needs to understand for a given modification, and a
modification in one module is less likely to break other mod-
ules.

9See: https://gitlab.common-lisp.net/groups/ansi-test

This modularity also makes it very simple for additional
clause types to be added by the Common Lisp implemen-
tation, such as the extension for iterating over the user-
extensible sequences described by Rhodes in his paper on
user-extensible sequences [3]. This extension defines the new
loop keywords element and elements for this purpose.

5. CONCLUSIONS AND FUTURE WORK

We have described a modern implementation of the Com-
mon Lisp loop macro. The main benefit of our method
is better modularity compared to existing implementations,
which makes maintenance easier, and also allows for more
modular integration of client-defined extensions.

Our implementation contains significantly more code than,
for instance, MIT loop; more than 5000 lines compared to
2000. There are several explanations for this discrepancy:

e Our code has more lines of comments; nearly 1500
compared to less than 200 for MIT loop.

e Our implementation is divided into nearly 50 files, or
modules, and each new file represents some overhead
in terms of code size,

e Our implementation contains more semantic verifica-
tion as shown by the fact that it rejects the examples
of non-conforming code shown in Section 2.1.

e Commonalities between clause types are captured as
explicit class definitions which require additional code.

e We most likely have not identified all the instances
where refactoring the code would be beneficial.

5.1 Use external parser framework

When we started the work on this library, we were un-
aware of any existing libraries for combinator parsing writ-
ten in Common Lisp. Since then, we have been made aware
of several libraries with such functionality, in particular:

e “cl-parser-combinators”® which is a library for combi-

nator parsing inspired by Parsec [2]. Parsec was orig-
inally written in Haskell, and later re-implemented in
other languages as well.

e “SMUG”!! which seems to be more self contained than
cl-parser-combinators, especially when it comes to the
documentation.

We plan to evaluate cl-parser-combinators and SMUG to
determine whether they provide the functionality required
for parsing loop clauses, and if not, whether any of them
can extended to obtain this functionality.

A significant advantage of using one of these libraries over
the existing technique is that they both have full support
for the most general backtracking capabilities of combinator
parsing. Using one of them rather than our current tech-
nique would make it unnecessary to consider careful ordering
of clause parsers the way we currently need to do.

A possible disadvantage might be that full backtracking
is potentially costly in terms of performance. However, we
do not expect performance of clause parsers to be a deter-
mining factor for the overall performance of a Common Lisp
compiler.

YOhttps://github.com/Ramarren /cl-parser-combinators
"https://github.com/drewc/smug



5.2 Second clause parser

As mentioned in Section 3, we are able to signal appropri-
ate conditions in some cases when the initial attempt is made
to parse the body of the loop form as individual clauses.
However, when a syntax error is detected in some clause, all
further analysis is abandoned. It would clearly be better if
the analysis could continue with the remaining clauses, and
if an appropriate error condition could be signaled for the
faulty clause.

A simple way of improving error reporting would be to add
more parsers for each clause type. This additional parsers
would recognize incorrect clause syntax and ultimately re-
sult in an error being signaled, but more importantly, they
would succeed so that parsing could continue with subse-
quent clauses.

Unfortunately, however, while the parsing technique we
use has many advantages as described in refSecsec-benefits,
it also has the main disadvantage that parsing gets slower
as more parsers need to be tried, in particular if no care
is taken to order the parsers with respect to probability of
success.

We plan to avoid this conundrum by implementing a sec-
ond parser for parsing individual clauses. This second parser
would be invoked only when the first one fails. In that sit-
uation, we estimate that performance is of secondary im-
portance and that emphasis should be on appropriate error
signaling.

5.3 Code refactoring

As suggested in the beginning of this section, there are
very likely several remaining opportunities for code refac-
toring. Part of the plan for future work is to identify such
opportunities and restructure the code accordingly, while
respecting the existing modular structure of the code.

6. ACKNOWLEDGMENTS

We would like to thank David Murray for providing valu-
able feedback on early versions of this paper.

7. REFERENCES

[1] G. Burke and D. Moon. Loop iteration macro.
Technical Report MIT/LCS/TM-169, Massachusetts
Institute of Technology, Cambridge, Massachusetts,
USA, July 1980.

[2] D. Leijen and E. Meijer. Parsec: Direct style monadic
parser combinators for the real world. Technical Report
UU-CS-2001-35, University of Utrecht, 2001.

[3] C. Rhodes. User-extensible sequences in common lisp.

In Proceedings of the 2007 International Lisp

Conference, ILC ’07, pages 13:1-13:14, New York, NY,

USA, 2009. ACM.

P. Wadler. How to replace failure by a list of successes.

In Proc. Of a Conference on Functional Programming

Languages and Computer Architecture, pages 113-128,

New York, NY, USA, 1985. Springer-Verlag New York,

Inc.

4



