
A CLOS protocol for lexical environments

Robert Strandh
Irène Durand

March, 2022

European Lisp Symposium, Porto, Portugal ELS2022



Context: The SICL project

https://github.com/robert-strandh/SICL

Several objectives:

I Create high-quality modules for implementors of Common
Lisp systems.

I Improve existing techniques with respect to algorithms and
data structures where possible.

I Improve readability and maintainability of code.

I Improve documentation.

I Ultimately, create a new implementation based on these
modules.

2/25



Cleavir compiler framework

I Used by SICL.

I First pass translates a concrete syntax tree (CST) to an
abstract syntax tree (AST).

I Equivalent to “minimal compilation” as defined by the
Common Lisp standard.

I Special case of a “code walker”.

I Needs to maintain a lexical compilation environment.

3/25



Lexical compilation environment

I Reflects the nested structure of code.
I Contains information about:

I variables (lexical, special, constant),
I functions,
I macros,
I symbol macros,
I blocks,
I tagbody tags,
I declarations that are not associated with functions or variables

(in particular optimize).

4/25



Lexical compilation environment

I Is passed as the second argument to every macro function.

I When it is nil, the “null lexical environment” is designated,
which is the same as the global environment.

I The Common Lisp standard does not define any operations on
environment objects.

I But “Common Lisp the Language (second edition)” (CLtL2)
has a section with such operators.

5/25



CLtL2 protocol

Function variable-information

Returns information about a name in a variable position.

I Arguments: A symbol and an optional environment.
I Values:

1. type of binding (:lexical, :special, :symbol-macro,
:constant, or nil).

2. A Boolean indicating whether the binding is local.
3. Association list of declarations that apply to the binding.

6/25



CLtL2 protocol

Function function-information

Returns information about a name in a function position.

I Arguments: A function name and an optional environment.
I Values:

1. type of binding (:function, :macro, :special-form, or
nil).

2. A Boolean indicating whether the binding is local.
3. Association list of declarations that apply to the binding.

7/25



CLtL2 protocol

Function declaration-information

Returns information about declarations that do not apply to a
particular binding.

I Arguments: A declaration identifier and an optional
environment.

I Value:
I If the declaration identifier is optimize, then a list of entries

of the form (quality value).
I If the declaration identifier is declaration, then a list of

declaration identifiers supplied to the declaration

proclamation.

8/25



CLtL2 protocol

Function augment-environment

Given an environment, returns a new environment augmented with
the given information.

Arguments:

1. An environment object.

2. Keyword arguments: :variable, :symbol-macro,
:function, :macro, :declare.

9/25



CLtL2 protocol

Function parse-macro

Given a macro definition, return a macro lambda expression.

Arguments:

1. name. The name of the macro.

2. lambda-list. A macro lambda list.

3. body. The macro body as a list of forms, etc.

4. env. An optional environment. Not sure what it is used for.

10/25



CLtL2 protocol

Function enclose

Given a macro lambda expression and an environment, return a
macro function.

Arguments:

1. lambda-expression. A lambda expression, possibly created
by parse-macro.

2. env. An optional environment.

11/25



CLtL2 protocol

It is incomplete:

I No functionality for information about blocks.

I No functionality for information about tagbodys.

I No associated information for functions, variables, etc.

It is not possible to extend in a compatible way, because of
multiple return values.

No free Common Lisp implementation we investigated (SBCL,
CMUCL, ECL, CCL) uses the CLtL2 protocol for the native
compiler.

12/25



Our solution

https://github.com/s-expressionists/Trucler

I Have the query functions return instances of standard classes.

I Define separate functions for each type of environment
augmentation.

13/25



Our solution

Query functions:

I describe-variable

I describe-function

I describe-block

I describe-tag

I describe-optimize

I describe-declarations

14/25



Our solution

Example: describe-function

Parameters:

I client. Trucler does not specialize to this parameter. Callers
should supply an instance of a standard class. Client code can
define methods that specialize to their own client class(es).

I environment. Client code must supply an instance of a
standard class, even to designate the global environment.

I name

15/25



Our solution

Example: describe-function

Returns a subclass of one of:

I function-description
Subclasses:
I global-function-description

Subclass:
I generic-function-description

I local-function-description

I macro-description
Subclasses:
I global-macro-description
I local-macro-description

I special-operator-description

16/25



Our solution

Example: describe-function

Accessors for global-function-description:

I name

I type

I inline

I inline-data

I ignore

I dynamic-extent

I compiler-macro

17/25



Our solution

Example:

(defmethod convert-cst

(client

cst

(info trucler:local-macro-description)

environment)

(let* ((expander (trucler:expander info))

(expanded-form

(expand-macro expander cst environment))

(expanded-cst

(cst:reconstruct expanded-form cst client)))

(setf (cst:source expanded-cst) (cst:source cst))

(with-preserved-toplevel-ness

(convert client expanded-cst environment))))

18/25



Our solution

Augmentation functions:

I add-lexical-variable

I add-special-variable

I add-local-symbol-macro

I add-local-function

I add-local-macro

I add-block

I add-tag

Each function returns a new environment object.

19/25



Our solution

Annotation functions:

I add-variable-type

I add-variable-ignore

I add-variable-dynamic-extent

I add-function-type

I add-function-ignore

I add-function-dynamic-extent

Each function returns a new environment object.

20/25



Our solution

Example of customization:

Client code can define a subclass of
generic-function-description with accessors such as:

I class-name

I method-class-name

21/25



Our solution

Example of customization:

Client code can define a subclass of variable-description
(say) global-variable-description if the client supports
global variables.

22/25



Our solution

Advantages:

I Easier to customize and extend in compatible ways.

I Extensions can still allow for simpler code walkers to work.

I Code for different clients can co-exist in the same image.

Disadvantages:

I More consing (but we don’t think consing in a code walker is
a problem).

I Our functions are generic, which may cause a performance
penalty in some Common Lisp implementations.

23/25



Future work

I Support more implementations (currently SBCL, CCL, and
“reference”)

I Improve documentation with respect to customization.

I Provide implementations of parse-macro and enclose for
supported implementations.

24/25



Thank you

Questions?

25/25


