A CLOS protocol for lexical environments

Robert Strandh
Irene Durand

March, 2022

European Lisp Symposium, Porto, Portugal ELS2022



Context: The SICL project

https://github.com/robert-strandh /SICL

Several objectives:

» Create high-quality modules for implementors of Common
Lisp systems.

» Improve existing techniques with respect to algorithms and
data structures where possible.

» Improve readability and maintainability of code.

v

Improve documentation.

» Ultimately, create a new implementation based on these
modules.



Cleavir compiler framework

Used by SICL.

First pass translates a concrete syntax tree (CST) to an
abstract syntax tree (AST).

Equivalent to “minimal compilation” as defined by the
Common Lisp standard.

Special case of a “code walker”.

Needs to maintain a lexical compilation environment.



Lexical compilation environment

» Reflects the nested structure of code.
» Contains information about:

variables (lexical, special, constant),

functions,

macros,

symbol macros,

blocks,

tagbody tags,

declarations that are not associated with functions or variables
(in particular optimize).

VYVVYVYYVYY

N
o



Lexical compilation environment

Is passed as the second argument to every macro function.
When it is nil, the “null lexical environment” is designated,
which is the same as the global environment.

The Common Lisp standard does not define any operations on
environment objects.

But “"Common Lisp the Language (second edition)” (CLtL2)
has a section with such operators.



CLtL2 protocol

Function variable-information

Returns information about a name in a variable position.

» Arguments: A symbol and an optional environment.
> Values:
1. type of binding (:lexical, :special, :symbol-macro,
:constant, or nil).
2. A Boolean indicating whether the binding is local.
3. Association list of declarations that apply to the binding.



CLtL2 protocol

~

N
3]

Function function-information

Returns information about a name in a function position.

» Arguments: A function name and an optional environment.
> Values:
1. type of binding (:function, :macro, :special-form, or
nil).
2. A Boolean indicating whether the binding is local.
3. Association list of declarations that apply to the binding.



CLtL2 protocol

o

Function declaration-information

Returns information about declarations that do not apply to a
particular binding.

» Arguments: A declaration identifier and an optional
environment.
> Value:
» If the declaration identifier is optimize, then a list of entries
of the form (quality value).
» |f the declaration identifier is declaration, then a list of
declaration identifiers supplied to the declaration
proclamation.



CLtL2 protocol

Function augment-environment

Given an environment, returns a new environment augmented with
the given information.

Arguments:
1. An environment object.

2. Keyword arguments: :variable, :symbol-macro,
:function, :macro, :declare.



CLtL2 protocol

Function parse-macro
Given a macro definition, return a macro lambda expression.

Arguments:
1. name. The name of the macro.
2. lambda-list. A macro lambda list.
3. body. The macro body as a list of forms, etc.
4

. env. An optional environment. Not sure what it is used for.



CLtL2 protocol

Function enclose

Given a macro lambda expression and an environment, return a
macro function.

Arguments:
1. lambda-expression. A lambda expression, possibly created
by parse-macro.

2. env. An optional environment.



CLtL2 protocol

N
o

It is incomplete:

» No functionality for information about blocks.
» No functionality for information about tagbodys.
» No associated information for functions, variables, etc.

It is not possible to extend in a compatible way, because of
multiple return values.

No free Common Lisp implementation we investigated (SBCL,
CMUCL, ECL, CCL) uses the CLtL2 protocol for the native
compiler.



Our solution

https://github.com /s-expressionists/ Trucler

» Have the query functions return instances of standard classes.

» Define separate functions for each type of environment
augmentation.



Our solution

Query functions:

>

vVvYyyvyy

describe-variable
describe-function
describe-block
describe-tag
describe-optimize

describe-declarations



Our solution

Example: describe-function

Parameters:

» client. Trucler does not specialize to this parameter. Callers
should supply an instance of a standard class. Client code can
define methods that specialize to their own client class(es).

» environment. Client code must supply an instance of a
standard class, even to designate the global environment.

» name



Our solution

Example: describe-function

Returns a subclass of one of:
> function-description
Subclasses:

» global-function-description
Subclass:

» generic-function-description
> local-function-description
» macro-description
Subclasses:
» global-macro-description

» local-macro-description

» special-operator-description



Our solution

Example: describe-function

Accessors for global-function-description:
P> name

> type

> inline

> inline-data

> ignore

» dynamic-extent

>

compiler-macro

~
N
o



Our solution

Example:

(defmethod convert-cst
(client
cst
(info trucler:local-macro-description)
environment)
(let* ((expander (trucler:expander info))
(expanded-form
(expand-macro expander cst environment))
(expanded-cst
(cst:reconstruct expanded-form cst client)))
(setf (cst:source expanded-cst) (cst:source cst))
(with-preserved-toplevel-ness
(convert client expanded-cst environment))))



Our solution

Augmentation functions:

>

VVyVvyVvYyVvyyYy

add-lexical-variable
add-special-variable
add-local-symbol-macro
add-local-function
add-local-macro
add-block

add-tag

Each function returns a new environment object.

19/25



Our solution

Annotation functions:
» add-variable-type
add-variable-ignore

add-variable-dynamic-extent

>

>

» add-function-type
» add-function-ignore
>

add-function-dynamic-extent

Each function returns a new environment object.



Our solution

Example of customization:

Client code can define a subclass of

generic-function-description with accessors such as:
» class-name

» method-class—-name



Our solution

Example of customization:

Client code can define a subclass of variable-description
(say) global-variable-description if the client supports

global variables.

N
N
N
G



Our solution

Advantages:
» Easier to customize and extend in compatible ways.
» Extensions can still allow for simpler code walkers to work.

» Code for different clients can co-exist in the same image.

Disadvantages:

» More consing (but we don't think consing in a code walker is
a problem).

» Our functions are generic, which may cause a performance
penalty in some Common Lisp implementations.

23/25



Future

work

Support more implementations (currently SBCL, CCL, and
“reference”)

Improve documentation with respect to customization.

Provide implementations of parse-macro and enclose for
supported implementations.



Thank you

Questions?

25/25



